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Synopsis.
'the problem of the alpha fine structure intensities for deformed nuclei is 

treated on the basis of the unified nuclear model. A system of coupled differential 
equations for the radial wave functions is obtained; they correspond to the dif­
ferent channels into which the alpha particle is able to leak out, leaving the daughter 
nucleus in different final states. An approximate analytical formula is derived for 
the intensities of the different alpha groups in terms of the alpha wave function 
on the nuclear surface. Also an analysis of the empirical data is presented.

The nuclear deformation causes the alpha decay rate to be enhanced by a 
factor which increases slowly with the nuclear deformation and which may amount 
to about 2 for the largest deformations actually found. However, an enhancement 
factor of this kind is difficult to detect experimentally.

The empirical intensities of the even parity alpha groups of even-even nuclei 
indicate the existence of higher multipole deformations of even parity in the 
nuclear surface. The magnitudes of these higher order deformations may change 
rapidly with the atomic number Z. From the empirical intensities of the odd parity 
alpha groups which have been found in some even-even nuclei, an estimate is 
presented of the magnitude of the nuclear octupole moment, the existence of 
which has been suggested by Christy to explain the presence of the odd parity 
alpha groups for these even-even nuclei.

The favoured alpha decays of odd-A nuclei and even-even nuclei are similar, 
and it is possible to obtain an approximate formula which relates the intensities 
of the favoured alpha groups of an odd-A nucleus to the intensities of the alpha 
groups of neighbouring even-even nuclei. This intensity formula which was first 
given in a recent paper by Bohr, Fröman, and Mottelson is discussed in greater 
detail.

The angular distributions of alpha particles from polarized nuclei are also 
considered.



I. Introduction.
few years after the advent of quantum mechanics, Gamow, Condon, and Gurney

Ik explained the puzzling features of alpha decay then known by treating lhe alpha 
decay as a barrier penetration problem. (See, e. g. Gamow and Critchfield28.) In 
this way, they were able to account approximately for the dependence of the half-life 
on the alpha particle energy and on the atomic number of the alpha emitting nucleus. 
Shortly afterwards, Rosenblum discovered lhe alpha fine structure which is due to 
the fact that the alpha particle may leave the daughter nucleus in different low-lying 
states. At that time, one could not account for the details of the fine structure pattern 
and for the intensities of the alpha groups.

During the last decade, extensive and accurate experimental work has been done 
in alpha spectroscopy, which has revealed many striking regularities in the alpha 
fine structure pattern. (See the review article by Perlman and Asaro43.) These re­
gularities have been found to be related to the rotational level structure which is 
characteristic of nuclei possessing a shape differing strongly from spherical symmetry. 
Such large nuclear deformations are known to occur for nuclei with configurations 
far removed from closed shells, as, for example, in the region of heavy elements 
(A >220). (See Bohr and Mottelson16.)

For the interpretation of the alpha fine structure, it is therefore imperative to 
lake into account the departure of the nuclear shape from spherical symmetry. The 
nuclear deformation is important not only for the energies of the different alpha 
groups, but also for their relative intensities. Furthermore, as was first pointed out 
by Hill and Wheeler33, the nuclear deformation may also affect both lhe absolute 
alpha decay rate and the angular distribution of the alpha particles.

In a previous paper by Bohr, Fröman, and Mottelson15, in which lhe inter­
pretation of the alpha decay systematics is discussed on the basis of the unified nuclear 
model, certain simple relations between the relative intensities of the alpha groups 
are found. In the present paper, the problem of the alpha decay of deformed nuclei 
is treated in more detail and this treatment is also coordinated with a new analysis 
of the experimental data. In particular, we derive approximate formulae for the in­
tensities of the different alpha groups in terms of the alpha wave function on the 
nuclear surface and the shape of this surface. It is found that the intensities depend 
very sensitively not only on the quadrupole moment, but also on higher multipole 
moments of the nuclear shape. Thus, the observed alpha intensities may yield in­
formation on the details of the nuclear shape as well as on the probability for alpha 
particle formation in different parts of the nuclear surface.

1*
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In Chapter II, we give a brief review of the description of strongly deformed 
nuclei according to the unified nuclear model. The treatment of the alpha penetration 
problem is discussed in Chapters III—VI. Chapter VII contains an analysis of the 
experimental data. The applicability of the theory to the account of empirical data 
is discussed in Chapter VIII. The paper is followed by two appendices (and a list 
of references is added). Appendix A contains formulae and curves for the Gamow 
wave functions which describe the penetration of alpha particles through a spherical 
Coulomb barrier. Appendix B deals with the penetration of an alpha particle through 
an anisotropic potential barrier which is fixed in space. This problem is treated by 
combining a three-dimensional WKB-method, first suggested by Christy, with ideas 
known from optics.

This work was begun in 1953—1954 when the author was a member of the 
Theoretical Study Group of CERN (Conseil Européen pour la Recherche Nucléaire) 
at Universitetets Institut for Teoretisk Fysik in Copenhagen. I wish to thank Professor 
Niels Bohr for the privilege of working at his institute. The present investigation 
was suggested to me by Professor Aage Bohr, to whom I am deeply indebted for 
many valuable discussions and advice, and for his continued interest in this work. 
I am grateful to Dr. Ben Mottelson for fruitful discussions of the problem and to Pro­
fessor I. Perlman from the University of California, Berkeley, for numerous data put 
at my disposal previous to publication. To Professor Ivar Waller, University of Upp­
sala, I wish to express my gratitude for what he has taught me during the time when 
I was his student as well as for his encouragement in the course of this work. Finally, 
it is a pleasure to thank Mrs. S. Hellmann for revising the English text and for her 
untiring help with the correction of the proofs.

II. Survey of Some Features of the Unified Nuclear Model.
The systematic occurrence of rotational nuclear spectra in the region of the very 

heavy elements shows that it is possible for these nuclei to separate approximately 
between an intrinsic motion of the nucleons in a deformed field of axial symmetry 
and a collective rotational motion of the nucleons. Corresponding to this separability 
of the motion, the normalized nuclear wave functions are*

\^K^M, Q ^-K (H-l)

if K 4= 0 and

(H-2)

if K = 0. In these expressions, the functions which are assumed to form an 
orthonormal set of functions describe the intrinsic particle and vibrational motion 

1/
* The normalization factors in (II-l) and (II-2) differ by a factor (8 tï2) from the corresponding 

normalization factors used by Boiir and Mottelson18, owing to the fact that we define the volume element 
dco such that \ do) = 1 , whereas Bohr and Mottelson use the definition i dco = 8 ti2.
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characterized by the quantum numbers specifying the particle configuration and the 
excited phonons in the nuclear vibrations. The quantum number K represents the 
component of the total angular momentum along the nuclear symmetry axis. If nothing 
else is stated, K is assumed to be non-negative. It seems possible to consider the in­
trinsic particle motion approximately in terms of the independent motion of the 
individual nucleons, i. e., to consider the individual particle part of %K to be described 
by a Slater determinant depending on the space and spin coordinates of the individual 
nucleons relative to a coordinate system which is fixed with respect to the nuclear 
ellipsoid41. For the lowest rotational band of even-even nuclei, the nucleons move 
in paired orbits, and K = 0. In this case, the wave functions are given by (II-2). 
For odd-A nuclei, odd-odd nuclei, and even-even nuclei with unpaired configurations 
Z< + 0 and the wave functions are given by (II-l). Vibrational oscillations of the 
nuclear shape may be superimposed on the individual particle motion, but the ex­
pected large excitation energy for such vibrations (2L 1 MeV) makes them relatively 
unimportant for the alpha decay problem. An exception may be the odd parity slates 
which appear in some even-even nuclei and which may represent an excitation of 
a very soft asymmetric vibration. The symbol q in (II-l) is the sum of two quantities, 
one depending only on the intrinsic particle state, the other being the number of 
excited phonons corresponding to spherical harmonics of odd order in the nuclear 
vibrations. To specify clearly the nuclear vibrational state it is sometimes convenient 
to use the quantity q as a further index on /, i. e., to write Ä q instead of /

The rotational nuclear motion is described by the D-functions which depend 
on the Eulerian angles co defining the orientation of the nucleus. These D-functions 
are characterized by the quantum numbers I, K, and M which are the total angular 
momentum of the nucleus, its component along the nuclear axis, and its component 
along a direction fixed in space (the z-axis), respectively. If the volume element dco 
is defined such that $<Zco = 1, the system of functions I/2Z+1 I)TM ±K (co) is ortho­
normal. The same is then also true for the system of wave functions wL „ defined 
by (II-l) or (II-2).

The energy levels of the nucleus are given as the sum of one term, Tpart (Z<)*,  
which depends on K and on other quantum numbers specifying the intrinsic state, 
and another term, 7’rot (K, I), which depends on both K and I. For a nucleus described 
by the wave functions (II-l), the possible values of I are

Z = Æ,Æ+l,Æ+2, . . .,

and the corresponding states of the nucleus have the same parity as the intrinsic state. 
Furthermore, 7’rot (Z<, Z) in this case is given by

7'rot(Æ,/)-^|/(7 + l)-A’(Æ + l) + a(-l/+i(Z + |)15, J, (II-3)

* We note that this term may contain a contribution from vibrational as well as individual par­
ticle motion.

Mat. Fys. Skr. Dan.Vid. Selsk. 1, no.3. 2



ß Nr. 3

where $ is the effective moment of inertia, and a is the so-called decoupling parameter. 
For the ground state band of an even-even nucleus described by the wave functions 
(11-2), Tpart (0) = 0 and the formula

(11-4)

applies. The possible values of I are

/= 0, 2, 4, .. .,

and the corresponding states of the nucleus have even parity. Some of the very heavy 
even-even nuclei appear to have also a low-lying vibrational mode of excitation with 
K = 0 and odd parity. The nuclear wave functions are again given by (11-2), Tpart(0) 
has a magnitude of a few hundred keV, and Trot(0, Z) is given by (11-4) with 3 dif­
fering somewhat from its value for the ground state band, and with the spin values

1= 1,3, 5, ....

The corresponding states of the nucleus have odd parity.

III. Construction of the Wave Function of the Alpha Penetration Problem.
The quantum numbers of the parent nucleus are recognized by an index i (for 

initial) anti those of the daughter nucleus by an index f (for final). To fulfill auto­
matically the conservation laws for the total angular momentum and for the angular 
momentum component along the z-axis, we describe the penetration of an alpha 
particle through the potential barrier by means of the wave function

, iEt \ \1 T-
^Mi = e h X , / , / , ? (III-l)

Kf 1 E

where E is the total energy of the alpha particle and the daughter nucleus in the 
center-of-mass system, r is the distance between the alpha particle and the center 
of the daughter nucleus, and (#, 92) are the polar angles of the alpha particle with 
respect to a center-of-mass coordinate system having axes with directions fixed in 
space. The 0-functions appearing in (III-l) are defined by*

(A7, i, if, «>. », <p) - y z(,f>■ ">•m I y a. k,(»■ f)-
Mf m 1 1

For the sake of simplicity, the dependence on the variables describing the intrinsic 
nuclear state has not been explicitly stated in this notation. It is easily seen that the 
^-functions form an orthonormal system of functions. The radial functions (r)

* Alt spherical harmonics and Glebsch-Gordan coefficients in this paper are defined according to 
Condon and Shortley20. 
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in (III-l) are so far left undetermined. They depend on Kf, which is here used as 
an abbreviation for all the quantum numbers specifying the intrinsic state, on / and If, 
as well as on Ki and A. However, in the notation we have omitted, for the sake of 
simplicity, explicit reference to the dependence on Ki and /». The sum over Kf which 
should be understood to include also a sum over all the other quantum numbers 
specifying the individual particle motion and the vibrational motion for the intrinsic 
state is included on the right-hand side of (HI-1) in order to allow the description of 
transitions to different rotational bands of the daughter nucleus.

The Clebsch-Gordan coefficients in (HI-2) are different from zero only if

I Ii - If I < I < Ii +If

and, therefore, the functions fxf,i,if(r) are defined only if this inequality is fulfilled. 
This fact is also immediately evident from the rules for the addition of two angular 
momenta. The requirement of conservation of parity introduces the further restriction 
that I takes even values if the daughter nucleus is left in a band with the same parity 
as the parent nucleus, and that I takes odd values if the daughter nucleus is left in a 
band with a parity opposite to that of the parent nucleus.

So far we have referred the motion of the alpha particle to a center-of-mass 
coordinate system with axes having directions fixed in space, but this motion may 
also be referred to a center-of-mass coordinate system with axes having directions 
fixed with respect to the nuclear ellipsoid. Assuming this latter coordinate system 
to be a polar one with the polar axis along the axis of the nucleus, and denoting the 
coordinates of the alpha particle in this coordinate system by (r, D', (p1), one realizes 
that it must be possible to transform the wave function (III-l) into the form

T. i Et \ ? v ' \ 1

Kf I Q

X|/ — 2 l Ky+ .0 (M) )

if A/+0, and into the form

^5/  ̂JET r •''«■'.flCO +1 XoÖM(,fl(®) > 1, «(»'• V>')

Qf 1 Q

if Kf = 0 . The functions { ) ’n (HI-3) and |/2 A + 1 %0 Q (M) i, Q (&'>

in (III-4) form orthonormal systems of functions.
The requirement that the appropriate one of the two wave functions (111-3) and 

(III-4) shall describe the alpha decay of a parent nucleus having the angular moment- 
2*  

(HI-3)

(IH-4)
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um component Ki along its axis shows that, on (or just outside) the nuclear surface, 
this wave function can contain only angular momentum components Q fulfilling, 
Kf + Q = ±Ki, i. e., Q = ± Ki - Kf. When r is but slightly greater than the nuclear 
radius, the functions gK r (r) can therefore be different from 0 only for Q = ± Ki~Kf. 
For Ki = 0, there exists only one such function if l>Kf, but none if I < Kf. For 
Kt =t= 0, there exist two if l>Ki + Kf, one if | Ki — Ä/| < l< Ki + K/, but none if 
l< I Ki -A'/]. Just outside the nuclear surface, the functions gK^ t f)(r) are therefore 
different trom zero for at most two ß-values, but, for larger values of r, these functions 
may be different from zero for all possible ß-values, since in general A? is not a con­
stant of the motion during the penetration (except for the decay of even-even nuclei).

The derivation of the connection between the functions fK^ z ^(r) and gK t n(r), 
which we find in (III-9), requires some calculations. These calculations as well as 
those in the following chapter will be done for the case Kf 4= 0, i. e., assuming that 
the wave functions of the daughter nucleus are given by (II-l). However, in reality 
this is no restriction, for from (II-l) and (11-2) it is clear that the formulae for the 
case Kf = 0 can be obtained from the formulae for the case A/ + 0 by leaving out 
the factor l/j/2 and the second term in the brackets ( }, and by putting A / = 0 .

By substituting (II-l) into (1II-2), one finds

<0,^,9?)

1 I z / 1= I XKfvi( (Kf, I. If, <o,0,<P) + (- I i ' "'z (- Kf. I, If, Of, », g,) ,

<Pm. being defined by*

, ______ (II1-6)
•111'/.'; Mf,m\lf,l; h.MWxif+lDj K (m) }fm(»,<p).

Mf m

Using the formulae*

Yi, m 9?) = zL I)lm, o (co) Yt Q (&', <p') ,
(j

Kf (w) O (<0)

- 2 (If, I-, Mf, m \lf,l; k. Mf t m) (I,, Z; If, Q\lf,I-, k, K, -, Q) +K/4 («,) 

and

I 2 7/4-1 (If, /; A7,f2|/y,/; k,Kf ! A2) = (-1/' k + Q\/2ki I (kJ-, Kf , ß,-ß\kj; If,Kf), 

one easily finds that (HI-6) becomes*

* In (III-6) and (III-7), as well as in the formulae between (111-6) and (1II-7), the quantum number 
Kf is allowed to take also negative values.
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Æ (A/, I, If, «, », f) - X (~ 1 + " (A. A> + Û, -Û I A,Kf)

 (111-7)
x |/ 2 It + 1 77^ Kf + [} («,) F,, fi (<>', y').

From (111-5), (111-7), and the formula

1 If+2£}(Ii,l;Kf + Q, — Q\lt, l; If, Kf)

we then find that

(1II-8)

This formula and the corresponding formula for the case Kf = 0 show that the wave 
function (III-l) can always be written in one of the forms (III-3) or (III-4) and that 
the connection between the functions fK z 7 (r) and gK z () (r) is

7V+-Ö. -ß| A,l; A, A7)/-K/,(,Z/(r) (HI-9)
Tf

which can also be written as follows :

/K/,<,//('-) = 2’(-1//“/' + ß(A,A AV+fi.-ßlA.Z; If,Kf)gKffltQ(r). (111-10)

For the alpha groups of even-even nuclei (A = Kf = 0), these two formulae become 

f/o, l, (} (r) = (~ 1)Z /o, l, l (r) ^0, (} (III-l 1)

/o, i, if (r) = (~ 1/ f7o, /, o (r) if- (111-12)

IV. Partial Transition Probabilities and Angular Distributions
of the Alpha Groups.

By an alpha group we denote those alpha particles which correspond to a tran­
sition from a certain state (A/, It) of the parent nucleus to a certain state (A/, //) of 
the daughter nucleus. It is the purpose of this chapter to give the formulae relating 
lhe partial transition probabilities and the angular distributions of the alpha groups 
to the asymptotic values (for large values of r) of the functions fKf,i,if(f) which 
appear in the wave function discussed in the previous chapter. It is assumed that 
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the functions fKf,i,if(r) are normalized such that they correspond to the alpha decay 
of a single atomic nucleus. Furthermore, we consider the total energy E as real, thus 
avoiding the unessential complication with complex eigenvalues and wave functions 
tending to infinity far away from the nucleus.

From the wave function (III-l), which is valid both for Ay =1= 0 and for Ay = 0, 
one immediately finds that the probability per unit time, that an alpha particle leaks 
out with the angular momentum / leaving the daughter nucleus in a state (Ay, 7y), is

PKf,i,if= Iim (r)|2> (IV-1)

I taking either only even values or only odd values depending on the parities of the 
parent and daughter nuclei. The velocity of the alpha particle relative to the daughter 
nucleus is here denoted by p. The sum of the kinetic energy of the alpha particle 
and the kinetic recoil energy of the (laughter nucleus is called the transition energy, 
and is denoted by Etrans- The quantities Etrans and v are connected by the formula

At rans = Ô W ,

where m is the reduced mass of the alpha particle and the daughter nucleus.
The partial half-life 

habilite PK , T is
TKf,i,if which corresponds

TKf,l,If =
In 2

to the partial transition pro-

From (III-l) and (III-2) one easily finds that the probability per unit time and 
unit solid angle (in the center-of-mass system), that an alpha particle leaks out in 
the direction (#, <p) leaving the daughter nucleus in the state (Ay, If, Mf), is

Z (h, I; Mf, i„ M,) ,z(r)0, (IV-2)

where 0i,m (#) denotes the normalized ^-depending factor of the spherical harmonic 
(i?, ç?). (See the book on the Theory of Atomic Spectra by Condon and Short- 

ley20.) By summing the expression (IV-2) over the possible My-values and averaging 
it with respect to the initial distribution of Mf-values, we can calculate the angular 
distributions of the different alpha groups emerging from polarized parent nuclei.

V. Differential Equations of the Alpha Penetration Problem.
In the center-of-mass system of the alpha particle and the daughter nucleus, 

the Hamiltonian of this two-body system is

H ~ z lr + V (î*  ) + Apart + Trot • (V-l)
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The reduced mass of the alpha particle and the daughter nucleus is denoted by m, 
the Laplacian with respect to r by Ar, the interaction energy between the alpha 
particle and the daughter nucleus by V (r'), and the operator for the excitation energy 
of the daughter nucleus by 7’part + Trot- The vectors r and r' are position vectors for 
the alpha particle relative to two different coordinate systems. The vector r = (r, & , (p) 
is referred to a center-of-mass coordinate system whose axes have fixed directions 
in space, whereas the vector r' = (r, , (p1) is referred to a center-of-mass coordinate
system whose axes have fixed directions with respect to the nuclear ellipsoid of the 
daughter nucleus.

The wave function which describes the barrier penetration of an alpha 
particle shall satisfy the wave equation

(V-2)

and the boundary conditions that the alpha wave function is assumed to be known 
on the nuclear surface and that it shall represent only outgoing waves for large 
values of r.

Starting from (V-l) and (V-2) we derive, in this chapter, differential equations 
for the functions fK and f7Ä/, z,ß(r)’ which we have introduced in Chapter III.
Although the calculations are here based on the wave function (111-3), i. e., we assume 
that Æ/+0, it is easily seen that the resulting differential equations for the functions 
fKf,i,if(r) and 9Kf,i,n(r) are valid also for A7 = 0-

For the Laplacian Ar we have the well-known formula

where L is the orbital angular momentum (in units of /?). Expressed as a differential 
operator in the polar angles, L2 has, of course, the same form whether it is expressed 
in the angles ($, (p) or in the angles (&’, <p‘). From (III-3) and the above formula for 
Ar we get

I Q + 1 ) \ Z X
r2 J 9Kf,l, Q (r)

Kf+Q(co) Ylf£2(»',<p') (V-3)

The axially symmetric potential V (r') which depends on the vector r' and on

+ (-!)* f %~Kf (to) ^i,-Q , (p ) j-.

the vibrational coordinates for the nucleus can be expanded as follows

V(O = X V?.(r) Y7,o(^')>
Â = o

(V-4)
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where the (r) arc expansion coefficients depending on r and the vibrational co­
ordinates. It is convenient to introduce a function [/o(r) which represents essentially 
the spherically symmetric part of V (r'), but is slightly modified so as to be inde­
pendent of the nuclear vibrations. The function V (r') %Kf qfY\ ()(&', <p') can then 
be expanded as follows:

- '■> ('•) XKf. tI V,. ß (#'. ?') + Z Z <</} I V° I (0 I ?/> XK/, if >'r, ß («'. ?'). (V‘5)
Sy I

where

rpjO)- Z (- i/l/2-^-
A I (V-6)

O,O|Z',A; /.0){VA(r) -Uo |/4 n Ô;. 0 }

according to (V-4) and the fact that the integral (over all directions) of the product 
of three spherical harmonics can be expressed in terms of Clebsch-Gordan coef­
ficients. If r is larger than the largest axis of the nuclear ellipsoid, the term in (V-6) 
which corresponds to 2 = 2 can be written

(Z, 2;-£>, 0 |/, 2; /',-£>) (Z',2 ; 0,0 |/', 2 ; Z,0)£"^°, (V-7)

as is easily seen from the formulae (V-10) and (V-13) which will be given later. The 
quantities <q'f | Vpz(r)|(/y> appearing in (V-5) are identically equal to zero, unless 
(<?}+/')- is even and both / and Z' are > |£?|, and they also have the following
symmetry properties :

<I Vp., ('■) !'//> = <'//1 rf?,. (r) I </)> .. <</,1 V,/,-’ (r) I ,/f) .

From (111-3) and (V-5) we gel

— e h —luo(r) gK t o(r) 
Kf I Q f \ f

<7/ | (r) I l ' I ~~ 9 {XKf Kf+ () (M) I, O > V )
Sy r ' '

+ (-l)1 f %-Kf^M^ - Kf-(it™) I,-_q($ ’V

(V-8)

if, in the symmetrization term, use is also made of the fact that (qf | Vp v (r) | q’f) is 
independent of the sign of Q and is zero unless (qf +1) -(q'f +1') is even. It is tacitly 
implied that the sum over Kf includes also a sum over the vibrational quantum number 
qf on which <7xy, z,o(r) depends, although this dependence is not indicated explicitly 
in the notation.

The potential V(r') is strongly influenced by the nuclear forces when the alpha 
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particle is inside the nucleus*,  but it is due only to the electrostatic forces when the 
alpha particle is outside the surface of the daughter nucleus, and then the potential
is given by

(V-9)

where e is the absolute value of the electron charge, and q (r") is the charge density 
of the daughter nucleus at the point characterized by the position vector r" which 
(like r') is referred to the coordinate system having axes whose directions are fixed
with respect to the nuclear ellipsoid. From (V-9) we find that, if r is larger than the 
largest axis of the nuclear ellipsoid, the coefficients V) (r), defined by (V-4), are
given by

V, = 8jle^
Z 7 (22 + l)z^ + i ’ (V-10)

where
Qi-P U.o We(r')dr'. (V-ll)

As special cases of this formula, one has

|/4 71
(V-12)

since the total charge of the daughter nucleus is (Z-2)e, and

where
e Qo = \ r2 2 Pz (cos ?7') q (r') t/r', (V-14)

Qo being the intrinsic quadrupole moment of the daughter nucleus. 
If the nuclear surface is represented by

(V-15)

and the nucleus is assumed to be uniformly charged, one easily finds that

O>0), (V-16)

provided that the deformation parameters /^(2>0) are very small. In more general 
cases, Qz depends not only on ß^, but also on the other parameters ßx (Z 4= z).

The wave function Kf °f the daughter nucleus is an eigenfunction of 
the operators Tpart and 7’rot, the corresponding eigenvalues being Tpart (A/) and

* Inside the nucleus, the usefulness of the simple two-body potential V (r') may be restricted to the 
region near the nuclear surface.
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(V-17)
X

where

(V-18)

For the alpha groups of even-even nuclei (A = A/= 0), this formula becomes

(V-19)

TTot(Kf, If) respectively. From (III-l), (III-2), (III-8), (III-9), and (III-10) wc there­
fore get

I part (A/) gK? (j (r) + it O, O' 9 Kj, i, O'(r)

From (III-3), (V-l), (V-2), (V-3), (V-8), and (V-17) we now gel the following 
system of coupled differential equations:

I V <l2 ,, Z X „ 1I ” 2 m dr*  4 1 1 - Efif ,1 9kI ’l> (r)

' 21 21 (lf \ } hi' (r) I 7//' 9 K'f,i', (j (r) + 21 i, Lh <>' 9k{, i, <y (r) ~ > 
q’f l' J (}' J J

where

and

Fz(r)= Fo(r)
IrlU+l)

2 in r2

^Kf — E- Tpart (A/) •

(V-20)

(V-21)

(V-22)

In the interior part of the Coulomb barrier, we can in first approximation neglect 
the last term in (V-20), describing the rotational energy of the daughter nucleus. To 
some extent, we can compensate for this approximation by replacing EK in the first 
term of (V-20) by EK^- AEK^, where A EK? is a constant which is to be chosen suit­
ably. Then, (V-20) is replaced by

2mdr2+^1^'^ J 7/<y, i, o (j‘) 1 21 ÏA'(r) 9 Kf, i . <Ar) O -*9
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if we neglect the vibrations and the possibility for transitions between different bands 
of the daughter nucleus during the alpha particle penetration through the potential 
barrier. This system of coupled differential equations is equivalent to the Schrödinger 
equation

j _2^A + 'Z<r'>-<FK/-z1£K/)p"ü- (V-24)

where

= 7 A JE 9Kf, i, O (r) Yi, o <P'Ï ■
1 I Q J

(V-25)

For those alpha groups of even-even nuclei which emerge from the parent 
nucleus in its ground state 0 +, and which leave the daughter nucleus in its lowest 
rotational band (A = A/ = 0), the differential equations (V-20) become

I h2 d2 / A2/(7 +1 II “ 2 m dr2 + Ul ~ ( E------- 23---- ) j 9o’l’° + V"’ v 9o- l’> 0 = ° ’ <V"26)

the functions g0, t q (r) being identically equal to zero, unless Ï2 = 0.
So far, we have derived the differential equations for the functions z o (r), 

but we need also the differential equations for the functions fK z z (r). These latter 
differential equations can be derived either by starting from (III-l) and proceeding 
in a similar way as when deriving the former differential equations, or they can be 
derived from (V-20) by using (HI-9) and (V-18). The result is

where

( 2mdr2 '

qf >■ Tf £>

■ < <lf I (r) I g>> (A, ; A7 + Ï2, - n I a , A» fy, (/•) - 0,

(V-27)

^part (Kf) — Trot (Kf, If) . (V-28)

Obviously, EKf,If is equal to the sum of the kinetic energy of the alpha particle and 
the recoil energy of the daughter nucleus and, hence, no divergency exists between 
EKf,if and the transition energy Etrans mentioned in the previous chapter.

In the outer region of the r-space where the deviation of V (r') from spherical 
symmetry can be neglected, (V-27) simplifies to

(" 2^ dr2 + Ul ~ E*f  • A,) O’) = 0 • (V-29)

For the alpha groups corresponding to transitions from the ground state 0 + of 
an even-even parent nucleus to the lowest rotational band of the daughter nucleus
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(/$ = /</=()), Eq. (V-27) becomes

+ y (r) ,.(0-0.
r

(V-30)

the functions /0 l if(r) being equal to zero, unless / = If. From (III-ll) and (III-12) 
it is immediately seen that the differential equations (V-26) and (V-30) are equivalent.

The differential equations for the alpha decay of deformed nuclei have also 
been considered by Rasmussen44, by Rasmussen and Segall45, and by Stbutinsky533-.

VI. Approximate Solution of the Alpha Penetration Problem.
In the region just outside the nuclear surface, where appreciable exchange of 

angular momentum takes place between the alpha particle and the daughter nucleus, 
the term 7’rot in the Hamiltonian is relatively unimportant, and we shall neglect it 
in this region*.  Neglecting also transitions between different rotational bands of the 
daughter nucleus, we can then in this interior region use the simple three-dimensional 
differential equation**  (V-24), the solution of which gives gKf,i, o(r) according to 
(V-25) and z 7 (r) according to (III-10). On the other hand, we know that, for 
large values of r the potential V (r') is nearly spherically symmetric, so that we can 
use the differential equation (V-29) for /'K j (r). In this outer region, the function 
fK i if (r) 4S therefore approximately equal to a solution of (V-29) representing an 
outgoing wave for large values of r. Such a solution is uniquely determined, except 
for an arbitrary factor which does not depend on r. With a convenient normalization 
of this constant factor, we denote the required solution of (V-29) by 6) r) 
(cf. Appendix A). To obtain an approximate solution of the alpha penetration problem 
we assume that the interior region where (V-24) can be used, and the exterior region 
where (V-29) can be used, overlap. In the common part of these two regions, we 
imagine a spherical surface whose center coincides with that of the nucleus. This 
sphere of radius 7?i may be considered as the boundary between the two regions 
where the above mentioned two different approximation procedures apply. The value 
of the radius Ri does not appear in the final formulae, but one should imagine 7b 
to be chosen such that the approximations introduced can be justified as well as

*) for the justification of our approximation procedure it would have been somewhat better to re­
place 7'rot try a suitably chosen constant AEr? in the interior region instead of neglecting it there. (See 
(V-23) or (V-24) and also the footnote on p. 20.) The value of B, defined by (VI-9) and appearing in the final 
formulae, would slightly depend on the value chosen for the constant zl/i7^ This slight dependence is, how­
ever, unimportant.

** As has been explained in the previous footnote, the constant appearing in (V-24) is chosen 
equal to zero.
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possible. To this purpose, it seems appropriate to choose 7?i such that the above 
mentioned spherical surface lies approximately in the middle of the potential barrier.

The surface of the daughter nucleus is assumed to be represented by*

«(ÿ-)-fiü (VI-1)
2=o

where ßo = 1/4 71, ßi = 0 and | ß/ I < < | ^2 | for 2 > 2. For small values of fø, the intrinsic 
quadrupole moment Qo and the deformation parameter ^2 are connected according to 
the formula**

3
j/ÖTt

(Z-2)R^2<?o. (VI-2)

where Z is the atomic number of the parent nucleus and qo is a dimensionless quantity 
which depends on the charge distribution of the nucleus. The value of ßz can be 
estimated from the formula (VI-2) by assuming the nucleus to have ellipsoidal shape 
and uniform charge density, in which case qo is equal to 1.

The differential equation (V-24) can be written

where
A ip = K~ ip,

K = K(r') = k
i V(r')-h’Ä/I

(VI-3)

(VI-4)

if k here denotes the magnitude of the wave vector corresponding to the energy EKf.
According to (V-4), (V-10), (V-12), (VI-4), and (A-4) we get

4 71
Z — 2 —— 2 Â +1 \ x / £ \ x / \ kr

2>o

1
n.oCO p (VI-5)

It is convenient to write

where
Æ (r') = A'o (r) + A K Q-, &'), 

A'o(r) = *|/^-l

(VI-6)

(VI-7)

and z1/<(r,#') is the purely anisotropic part of K (r'). From (VI-5), (VI-6), and 
(VI-7) we easily find the approximate formula

2 71 \ 1

2> 0

* Our deformation parameter ß2 corresponds to the quantity ß cos y in the papers by Bohr and 
Mottelson14’ 18 where ß is positive and y is equal to 0 for an axially symmetric prolate nucleus and equal 
to 71 for an axially symmetric oblate nucleus.

** See Eq. (V. 7) on p. 56 in ref. 16 or Eqs. (V-13) and (V-16) in the present paper.
*** See footnote ** on p. 16.

Mat. Fys. Skr. Dan.Vid.Selsk. 1. no.3. 3
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The differential equation (VI-3), which we use in the region between the nuclear 
surface and the surface of the sphere of radius /?i, is to be solved under the boundary 
conditions that, on the nuclear surface, the wave function ip shall be equal to a given 
function ipo (&', <p'} depending on Z, A,/h, and Kf, but not on It and If, and that y 
shall decrease very rapidly as one moves outwards in the potential barrier. An ap­
proximate solution of this problem can be obtained by arguing as follows. The an­
isotropic part of the electrostatic field acts essentially only at points comparatively 
near to the nucleus, whereas the centrifugal barrier is of importance over larger distances. 
In first approximation, we may therefore neglect the centrifugal barrier at those small 
distances where the anisotropy is of importance. The fact that this approximation is 
not a very good one is not particularly dangerous, for it turns out that the nuclear 
shape is more important for the alpha decay than is the anisotropy of the electrostatic 
held. From these arguments it follows that, if we want to calculate the alpha wave 
function at a point at a distance r (< /?i) from the center of the nucleus, we can in 
first approximation replace the actual nuclear surface by the sphere of radius l<o 
and the actual anisotropic potential barrier by the corresponding spherically sym­
metric potential barrier, if we at the same time replace the alpha wave function 
ipo (&', 9? ) on the actual nuclear surface by the alpha wave function given by (B-34) 
on the sphere of radius Hq. In the bracket of (B-34) the first term is due to the nun- 
spherical nuclear shape, whereas the second term (which is less important) is due to 
the anisotropy of the potential barrier. For the alpha wave function ip at a point*  
(r, 0, 99) such that r < /?i we now easily realize that the formula (B-35) applies. This 
formula, which we have here deduced in a more or less intuitive way, is obtained, 
in Appendix B, as an approximate result of a method which, in principle, is more ge­
neral and less approximate.

* Here, the unprimed polar angles # and qp are assumed to be referred to a coordinate system with 
axes having directions which are fixed with respect to the nucleus.

From (V-25), (VI-1), (VI-6), (VI-7), (VI-8), and (B-35) we get

dKf, i, o (0

Z>o\ ’ x

d.v2 71 1
Z-2 2zi 1

YÅ, o (#) iX <p) sin D dD d<p



Nr. 3 19

for r< /?i. In the exponent of this expression, the term corresponding to Z = 2 can 
be simplified by means of (V-13) and (VI-2), and for r = /?i the upper integration 
limit krjx may approximately be replaced by 1. Therefore we get

('( F /? ) i LgKf i q(^) = \ \ V’i (#. ?) exp { BP2 (cos d) } Y^^d, (p) sin ddddtp,

where 

and

(VI-9)

(VI-10)

the second term in the parenthesis ( ) in the exponent of (VI-10) being less than 20 °/o 
of the first term in this parenthesis if /. > 2. The function (d, <p) is now assumed 
to be resolved in terms of spherical harmonics as follows

Vh (#> <?) = A ar, o' Yr, (vi_1 1 )
V Q’

where av q- are coefficients which depend on Exf, Z, A, ß%, ß$, . . ., Qi, 03, Q4, ■ • • and 
on the parameters appearing in ipo (d, <p) • Since the component of the total angular 
momentum along the nuclear axis is conserved during formation of the alpha particle, 
the coefficients az q are different from zero only if Q = ± Kt - Kf and | Q | I. Using 
(III-10), (VI-11), and the formula for z, 0(^1) 011 this Pa&e> we 8c‘t

- (- K/ + Û. -ß|A, I; l,. ■
Gi (Riff, Eq) O l'

where the quantities k^r(B) are the elements of a symmetric matrix defined by

kpr(B) = \ 0Z ()(d) exp (BP2 (cos d)} &v,o^} sin ddd,
Jo

the normalized ^-depending factor in the spherical harmonic Yl()(d, ç?) being denoted 
by £>(#). According to big. 6 (in Appendix A), the function Gi(E, Ri)/Gi(E, Ro) 
does not change as rapidly with E in the interior region of the potential barrier, as one 
might expect from the strong E-dependence of Gi (E, r). In the functions Gt appearing in

3*
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the above formula for fKf, i, if (Ri), we may therefore approximately replace*  Exf by E/f 
which is an abbreviation for EKf If. Using the formula for fKf, i,if(Ri) thus obtained and 
noting that for r > Ri the function /^, i,if (r) is approximately equal to Gi (Eif, r), except 
for a factor which does not depend on r, we get the formula

which is valid for r > /Ù.
brom (IV-1), (VI-12), (A-15a), and (A-llb), we lind that the alpha transition 

probability per unit lime for the transition from the state (A'j, A) of the parent nucleus 
to the state (A/, //) of the daughter nucleus is

z/ =
z

= vi A Ro
Go (Eif, 7?o)

x y ( - 1 )" ( /i, / ; Å7 + .Q, - ö I 7f, / ; , Kf) V *«.  ( li) 
ß Z' ’

(Vl-13)

According to (IV-2), (VI-12), (A-15a), and (A-llb), the probability per unit 
time and unit solid angle (in a center-of-mass coordinate system with axes having 
directions fixed in space) that an alpha particle leaks out in the direction (&, tp) 
leaving the daughter nucleus in the stale (A>, If) is obtained by averaging the fol­
lowing expression with respect to the initial distribution of Jf<-values:

Ro
Go (Eif, Ro)

l(l+\)
x

x (If, I; Mf, If, I; II, Mi) Mf(&)

2 11 )° + Kf) Y II) <‘r <>
I) V '

2
(VI-14)

For Ki = 0 the sum over A? in (VI-12), (VI-13), and (VI-14) contains only one 
term (corresponding to A? = — Kf). For Ki 4= () the same sum may contain two terms 
(corresponding to & = Ki~Kf and A2 = - Ki - Kf) if l>Kt + Kf, one term (corre­
sponding to A2 = Kt — Kf) if I Ki — A/ J < Z < Ki + A/, whereas it is zero if I <| Iu — Kf |. 
furthermore, I is restricted either to even values only or to odd values only, depending 
on whether the parent nucleus and the band Kf of the daughter nucleus have the 
same or opposite parity.

A detailed theoretical estimate of the accuracy of the approximations involved 
in the derivation of (VI-12), from which (VI-13) and (VI-14) arc obtained, is dif-

* The justification for this replacement may be somewhat improved by keeping A Exf in (V-24) and 
choosing it such that Exf - A Exf is some suitable average value of the £> -values considered. See the foot­
note * on p. 16.
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licult, bul a very crude estimate indicates that, for the typical values 90, 
()o « 10•10 24 cm2, EKf 5 MeV, and | Eif- E^f | A 100 keV, the error involved is less 
than about 50 °/0, and it seems quite probable that it is appreciably smaller. An 
essential part of this error is due to the approximation that the penetration of the 
alpha particle through the interior region of the potential barrier was assumed to 
take place in the same way as if the nucleus were fixed in space. Another essential 
part of the error is due to the neglect of the anisotropy of the potential barrier in 
the region outside of r = R±. The accuracy of (VI-12) is expected to decrease as 
If- Kf increases, since, firstly, the approximation which is involved in the replace­
ment of (V-20) by (V-24) in the region between the nuclear surface and the sphere 
of radius Ri as well as the replacement of Gi (Enf, Ri) by Gi (Eif, Rß) becomes less 
accurate as the energy differences between the different alpha groups considered in­
crease; secondly, in the region r>Ri, the neglected coupling between the different 
functions fKf,i,if(E) should be comparatively more important for the smaller than 
for the larger of these functions.

In a few special cases, the coupled differential equations which describe the 
alpha decay of even-even nuclei of ellipsoidal shape have been solved numerically 
by Rasmussen and Segall45. These authors treat the rotational energy term by an 
approximation method and take into account only the partial waves corresponding 
to alpha groups of angular momenta I < 4. Their results may therefore possibly 
contain a minor uncertainty in the intensity ratio for the alpha groups a2 and ao and 
a somewhat larger uncertainty in the intensity ratio for the alpha groups cq and 
ao. In two cases corresponding to /^-values of 0.30 (their £o = 1.51) and 0.36 (their 
£o = 1-41), the alpha wave function was assumed to be constant on the nuclear 
surface. For these two cases the intensity ratios calculated by Rasmussen and Segall 
(cf. their table I) can be compared with the corresponding intensity ratios calculated 
according to the intensity formula in the present paper, and it is found that the agree­
ment is good to within 50 °/0. For the case corresponding to the smaller one of the 
above mentioned ^-values (i. e., to ßz = 0.30), the agreement for the ratio of the in­
tensities of the alpha groups <X2 and ao is even somewhat better than 10 °/0.

VII. Analysis of the Experimental Data.*
'flic available experimental data on alpha decay of parent nuclei with known 

alpha branching**  and with Z > 82 (except for the data on long range alpha particles) are 
collected in Table 1. Most data are taken from the table of isotopes bv Hollander, 
Peblman, and Seabokg35, which in the following is referred to as HPS. In those cases, 
where some or all data come from other publications, the last column of Table 1 gives

* Note added in proof: Further data are given in the forthcoming review article on alpha decay 
by Perlman and Rasmussen439- (see their table I). When the analysis in the present paper was made, 
their data had not yet been available.

** As regards alpha decay of nuclei with unknown alpha branching, see, e. g., the recent work on 
the light Po-isotopes by Rosenblum and Tyrén48.

Mat. Fys.Skr.Dan.Vid.Selsk. 1, no.3. 4
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the appropriate references in terms of figures referring to the list at the end of the 
present paper. If PS is usually not quoted, even if data from this table are used to com­
plete data taken from other publications. 'Phus, almost all the half-lives are cited ac­
cording to HPS. For those parent nuclei which are quoted without any reference, all 
the data have been obtained from HPS. When some remark is required, the last column 
of 'fable 1 contains a letter which refers to the list of remarks on p. 33.

In the first column of 'fable 1, the symbols for the alpha radioactive parent nuclei 
w ith Z > <32 are listed. The third column gives the experimentally measured half-life 
7’tot of each parent nucleus. This half-life may result from different kinds of radio­
active branching, fhe second column gives the percentage of radioactivity that is 
alpha decay, for some parent nuclei, column two shows only lower boundaries for 
the percentage of alpha branching. If this lower boundary is rather close to 100, we 
use the mean value of 100 and the boundary in the calculations that are required to 
obtain the values in some of the following columns. If, on the other hand, the lower 
boundary is close to 0, we use the value of the boundary itself. (Example: If the 
second column gives > 90, we have chosen the value 95 ( = mean value of 90 and 100). 
If the second column gives > 10, we have chosen the value 10). When the second 
column is empty, it is understood that the alpha branching is given as 100 °/o- In 
the fourth column, the energies (expressed in MeV) of the alpha particles (except 
for the long range alpha particles) are listed. It should be mentioned that the listed 
energies are the alpha particle energies and not the transition energies*.  This choice 
was made only in order to simplify the numerical work. For most parent nuclei, the 
alpha particle energies arc found in H PS or in the references quoted in the last column 
of fable 1 ; in some cases, however, where these references give, instead, the energies 
of the gamma rays following the alpha decay, the alpha particle energies Ex have been 
calculated from the energy E™ax of the most energetic alpha particles and the excitation 
energies Eexc of the daughter nucleus. This is easily done by means of the formula

where M is the mass ol the daughter nucleus, and m is the reduced mass of the alpha 
particle and the daughter nucleus. The last term on the right-hand side of this formula 
is sometimes unimportant, and in such cases we have often neglected it entirely.

For every parent nucleus, the number of alpha particles in a particular group rela­
tive to the total number of alpha particles is called the relative intensity or the abun­
dance of the alpha group. The experimentally determined values of these relative inten­
sities (expressed in per cent) are listed in the fifth column. For those parent nuclei for 
which only one alpha group has been observed this column is empty. For every parent 
nucleus the sum of the percentages in column five should be 10(1; due to experimental 
uncertainties this is only approximately true for the values listed in 'fable 1.

* As will be remembered, the transition energy of an alpha group has been defined as the sum of 
the energy of the alpha particle and the recoil energy of the daughter nucleus.
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(VIl-1)
. 1

logioT’o = {139.8 + 1.83 (Z - 90) + 0.012 (Z - 90)2}-y-g- 

- (52.3 + 0.30 (Z- 90) + 0.001 (Z - 90)2},

The partial half-life 7’ (expressed in seconds) of an alpha group is the product 
of three factors. The first factor is the experimentally measured half-life 7\ot in 
column three (expressed in seconds), the second one is 100 divided by the alpha branch­
ing percentage in column two, and the third one is 100 divided by the relative intensity 
percentage in column live. Column six gives the values of logio7’, 7' being expressed in 
seconds*.  These values are listed with two decimals, although in general the accuracy 
of the experiments is not as good. Negative logarithms are recognized by an index n, 
so that, e. g., logioT = 8.28n means logio7’= 8.28 - 10 .

If one plots logioT against E~'2 for the ground slate alpha transitions of the 
even-even nuclei, one finds that the points corresponding to a fixed value of the atomic 
number Z of the parent nuclei lie almost on a straight line, except for those parent 
nuclei which are too near to the closed shell with Z = 82 protons and N = 126 neutrons 
(i. e., A = Z + N= 208). This plot is shown in Fig. 1, where the symbol referring to 
each point denotes the corresponding parent nucleus. For those even-even parent 
nuclei (of Po and Em) which have mass numbers A<214, appreciable deviations 
from the straight lines occur, and therefore these nuclei are not included here. Con­
sidered individually, some of the straight lines may not be very accurately defined, 
but if one considers them collectively and requires that the distances between any 
two neighbouring lines and also the slopes of the lines shall vary regularly with Z, 
all the straight lines are well enough defined for our purpose. In drawing the lines 
one should, of course, take into account the further requirement that those points which 
are most accurately known from experiments must be especially well approximated 
by the straight lines. The straight lines are drawn graphically in such a way that 
they fulfill as well as possible all these requirements. As is easily seen from the figure, 
the distance between any two successive straight lines decreases slightly and regularly 
as Z increases. The accuracy of the experimental data available does not allow us 
to draw any regular curves that are better than straight lines. I he reason why a few 
of the even-even parent nuclei (especially Pu232) show more essential deviations from 
the straight lines may be associated with uncertainties in the experimental data tor 
these nuclei, and it would therefore be important to re-examine these alpha decays.

The smooth function of Ex and Z which gives the partial half-lives for the ground 
state alpha transitions of even-even nuclei will be denoted by To. The analytical 
formula

where To is expressed in seconds and Ex in MeV, gives a good approximation of the 
straight lines in Fig. 1. The experimental data on the ground state alpha transitions 
of the even-even nuclei are, in fact, equally well represented by the formula (VII-1)

* The values in columns six to nine have been obtained without regard to the signs >, >, and 
which appear for some data in columns two to five.

4*
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0.30 0.35 0.40 0.45 0.50 0.55

Fig. 1. The 10-logarithms of the partial half-lives T (expressed in seconds) for Lhe ground state alpha tran­
sitions of the even-even nuclei have been plotted against E~£ ’ where E is the corresponding alpha particle 
energy expressed in MeV. The chemical symbols referring to the experimental points denote the parent 
nuclei. The straight lines have been drawn graphically such that the points corresponding to a fixed Z-value 
shall be approximated as well as possible by a straight line and that the sequence of straight lines shall be 
spaced as regularly as possible, For the parent nuclei Em218, Ba222, Th226, U230, U232, Cf244, and Cf246 new data 
have appeared after this figure was drawn. The changes in the corresponding experimental points which 
are implied by these new data are small, and therefore we have not re-drawn the figure. For the parent nuclei 
Cf250, Cf252, and Fm254, no experimental data were available when this figure was drawn. The points corre­
sponding to these three parent nuclei have later been included in the figure, where they are recognized 
as small circles. Hence the system of straight lines corresponding to Z = 84, 86, . . ., 98 as well as the dotted 
line corresponding to Z = 100 (which has been obtained by extrapolating the regular sequence of lines cor­
responding to Z = 84, 86, . . ., 98) was drawn before any data on the three parent nuclei Cf250, Cf252, and 
Fm254 were available.

The signs > and > which appear in column two of 'fable 1 indicate that, in the above figure, the 
points corresponding to the parent nuclei Pu232 and Cm238 may be displaced somewhat downwards (cf. foot­
note on p. 23).

After this figure had been prepared for publication, there appeared data on the ground state alpha 
transitions of the parent nuclei Cm246 (cf. refs. 19a and 43a), Cm248 (cf. ref. 19a), Fm250 (cf. ref. 43a), and 
Fill252 (cf. Table 1 and ref. 43a). 
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as by the straight lines in Fig. 1. The absolute value ol’ the dilference between logioTo 
according to the formula (VII-1) and logioTo according to the full-drawn straight 

 1 ...
lines in the figure is less than 0.1 if E^ lies between 0.35 and 0.50, i. e., if Ex lies 
between 4.0 and 8.2 MeV.

The formula

logio'A = { 140 + 1.8 (Z - 90) + 0.01 (Z - 90)2} (VI[2)

- {52.3 +0.3 (Z- 90)},

which is an approximation of (VII-1), is also useful. For the parent nuclei of the 
isotopes of Th, U, Pu, Cm, Cf, and Fm in Fig. 1, the experimental data on the ground 
state alpha transitions are about equally well represented by (VII-2) as by the straight 
lines in Fig. 1, and for the parent nuclei of the isotopes of Po, Em, and Ra in Fig. 1 
the experimental data are only slightly better represented by the straight lines in 
Fig. 1 than by (VI1-2). The absolute value of the dilference between logioï’o according 
to (VII-2) and logioTo according to the straight lines in Fig. 1 is less than 0.2 if E~2 
lies between 0.35 and 0.50, i. e., if Ea lies between 4.0 and 8.2 MeV.

A priori the smoothed out function To is, of course, defined only for even 
Z-values, but it is very useful to define this function also for odd Z-values. Fig. 2 
shows the straight lines obtained for even Z-values in Fig. 1 together with the straight 
lines for odd Z-values found by graphic interpolation. The system of straight lines 
in Fig. 2 defines To graphically as a smooth function of Ex and Z both for even and 
odd values of Z. Column seven of Table 1 gives the values of logioTo (with To expressed 
in seconds) which have been obtained graphically from Fig. 2 by putting Z equal 
to the atomic number of the parent nucleus and Ex equal to the alpha particle energy 
of the alpha group considered. These values of logioTo are listed with two decimals, 
the second decimal being estimated as either 0 or 5. The intrinsic transition prob­
ability for an alpha group is given by the quotient To/T which we shall call the 
F-value of the alpha group. From columns six and seven of Table 1 we have calculated 
the values of logio(7o/T) to one decimal, and from these values we have obtained 
the F-values which are listed in column eight. The absolute F-values are approximate 
to the same degree as the function To, but the relative F-values for the alpha groups 
of any given parent nucleus are much more accurate. For favoured alpha groups 
such relative F-values are very useful. They will be designated as the reduced transition 
probabilities and will be denoted by c and defined as the quotient of the F-value 
for the alpha group considered and the F-value for the special alpha transition of 
the same nucleus for which zl / = 0. The F-values appearing in this definition are 
best calculated by means of (VII-1) or (VII-2), for then one avoids errors due to 
the difficulty of reading the graph in Fig. 2 accurately. The reduced transition prob­
abilities c, obtained by means of (Ad 1-1), for the alpha groups of even-even nuclei 
and the favoured alpha groups of odd-A nuclei are listed in column nine. As regards
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Fig. 2. The straight lines corresponding to even values of the atomic number Z of the parent nucleus are 
the same as those in Fig. 1 ; the straight lines corresponding to odd values of Z have been obtained by 
graphic interpolation between the lines corresponding to even Z-values.

the numerical values of c compared with those of F it is clear that, on the average, 
F c for the alpha groups of even-even nuclei and, as shown in Table 1, F 0.5c 
for the favoured alpha groups of odd-A nuclei.

Note added in proof: In the forthcoming review article on alpha decay by Perlman and Ras 
müssen43», an analysis of the empirical alpha decay data is also presented. It is essentially similar to 
ours, although it is partly based on quite recent data which had not been available to as. Despite some 
minor differences between the two analyses, the results are in general in satisfactory agreement.
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Table 1. Analysis of the experimental data on alpha decay for parent nuclei 
xx ith Z>82 (except for the data on long range alpha particles).

Parent 
nucleus

0/ 1
/o a t tot i’a

Bel. a-int.
(°/o) logio l»8io'/’o 1 I c References 

and remarks

K3Bi<198 1.7 m 6.2 2.01 0.95 0.08
Bi198 5- IO-2 7 m 5.83 5.92 2.60 0.0005
Bi199 IO-2 ~ 25 m 5.47 7.18 4.30 0.001
Bi201 3-10~3 62 m 5.15 8.09 5.95 0.008
Bi203 ~ IO-5 12 h 4.85 11.63 7.65 0.0001
Bi2"9 3-1017 y ~ 3.15 24.98 21.55 0.0004
Bi211 99.68 2.16 m 6.618 84 2.19 9 20 0.001

6.272 16 2.91 0.65 0.005
Bi212 33.7 60.5 m 6.086 27.2 4.60 1.50 0.0008

6.047 69.9 4.19 1.60 0.003
5.765 1.7 5.80 2.85 0.001
5.622 0.15 6.86 3.55 0.0005
5.603 1.1 5.99 3.65 0.005
5.481 0.016 7.83 4.30 0.0003

Bi213 2 46.5 m 5.86 5.14 2.45 0.002
Bi214 0.04 19.7 in 5.505 15 6.82 4.15 0.002

5.444 55 6.73 1.10 0.005

po2°4
841 ° ~ 1 3.8 h 5.37 6.13 5.30 0.2

po206 ~ 10 9 d 5.218 6.89 6.10 0.2
PO207 ~ IO“2 5.7 h 5.10 8.31 6.80 0.03
Po2"8 2.93 y 5.109 7.97 6.70 0.05
Po21’9 > 90 ~ 100 y 4.877 9.52 8.05 0.03
Po210 139 d 5.301 7.08 5.60 0.03
Po211 0.52 S 7.434 99 9 72 j. i-n 6.85rø 0.001

6.88 0.50 2.02 8.80w 0.0006
6.56 0.53 1.99 0.00 0.01

Po212 3.0-10-’ s 8.776 3.48n 3.10„ 0.4
Po213 4.2-10-« s 8.336 4.62,, 4-30n 0.5
Po214 1.5-10-4 s 7.680 6-18n 6.15n 1
Po215 > 99 1.83-10-3 s 7.365 7.27n 7.10,, 0.6
Po216 > 99 0.158 s 6.774 9.20w. 9.20re 1
Po218 > 99 3.05 ni 5.998 2.26 2.25 1

85At20’ ~ 10 2.0 h 5.75 4.86 3.80 0.08
At208 0.5 1.7 h 5.65 6.09 4.25 0.02
\t209 ~ 5 5.5 h 5.65 5.60 4.25 0.05
At210 0.17 8.3 h 5.519 32 7.74 4.90 0.002

5.437 31 7.75 5.30 0.004
5.355 37 7.68 5.80 0.01

At211 40.9 7.4 h 5.862 4.81 3.30 0.03
At214 ~ 2-10-® S 8.78 4-30n 3.35m 0.1
At215 ~ IO-4 s 8.00 6.00n 5.50„ 0.3
At216 ~ 3-10-4 s 7.79 ) 6.48ra 6.10n 0.4
At21’ 0.019 s 7.01 I 8.28w 8.65„ 2.5
At219 ~ 97 0.9 m 6.27 i

1 1.75 1 1.50 0.6
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'Fable 1 (continued).

Parent 
nucleus °/ rz/o a 7'tot Ex Bel. a-int.

(°/o) log]07' login '/'n r c. Beferences 
and remarks

..Em«« ~ 20 23 m 6.138 3.84 2.45 0.04
Em209 ~ 20 30 m 6.02 3.95 3.00 0.1
Em210 > 95 2.5 h 6.036 3.96 2.90 0.08
Em211 25 16 h 5.847 33 5.84 3.80 0.01

5.778 67 5.54 4.10 0.04
Em212 23 m 6.262 3.14 1.95 0.06
Ein215 ~ IO“6 s 8.6 4.00w 4.10„ 1.3
Em216 ~ 10“4 s 8.01 6.00w 5.80n 0.6
Em217 ~ IO“3 s 7.74 7.00w 6.60w 0.4
Em218 0.019 s 7.13 99.8 8.28n 8.60h 2.0 1 1 1. 42

6.53 0.2 0.98 0.85 0.8 0.34
Em219 3.92 s 6.824 69 0.75 9.70w 0.1

6.559 15 1.42 0.75 0.2
6.434 12 1.51 1.30 0.6
6.214 4 1.99 2.15 1.6

Em220 54.5 s 6.282 1.74 1.85 1.3
Em221 20 25 m 6.0 3.87 3.10 0.2 40
Em222 3.825 d 5.486 5.52 5.55 1

17r212
871 1 44 19.3 m 6.409 37 3.85 1.75 0.008

6.387 39 3.83 1.80 0.01
6.339 24 4.04 2.00 0.01

El’218 ~ 5-10-3 s 7.85 7.70w 6.60n 0.08
Fl219 0.02 s 7.30 8.3O„ 8.35n 1.3
]?p220 27.5 s 6.69 1.44 0.60 0.2
Fr221 4.9 m 6.30 ~ 75 2.59 2.20 0.4

6.05 ~ 25 3.07 3.30 1.6

88Ra«» 2.7 ni 6.90 2.21 0.20 0.01
Ba219 ~ 10~3 s 8.0 7.00n 6.50w 0.3
Ba220 ~ 3-10-2 s 7.43 8.48w 8.30m 0.6
Ba221 30 s 6.71 1.48 0.90 0.3
Ba222 38 s 6.55 95 1.60 1.55 1 1 11. 12

6.22 5 2.88 2.95 1.3 1.35
Ba223 11.2 d 5.730 9 7.03 5.30 0.02 Ct

5.704 53 6.26 5.40 0.1
5.596 24 6.60 5.90 0.2
5.528 9 7.03 6.30 0.2
5.487 2 7.68 6.50 0.06
5.419 3 7.51 6.85 0.2

Ba224 3.61 d 5.681 95 5.52 5.50 1 1 I
5.445 5 6.80 6.70 0.8 0.87

Ba228 1622 y 4.777 94.3 10.73 10.65 0.8 1
4.592 5.7 11.95 11.85 0.8 1.05
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Table 1 (continued).

Parent 
nucleus

0/ a/o a Ï tot Ea Rel. a-int.
(°/o) log™ T logio 7'0 F c References 

and remarks

89AC222 5.5 s 6.96 0.74 0.35 0.4
Ac223 99 2.2 ni 6.64 2.12 1.60 0.3
Ac224 ~ 10 2.9 h 6.17 5.02 3.55 0.03
A c225 10.0 d 5.80 5.94 5.35 0.3
Ac227 1.2 22 U 4.942 10.76 10.05 0.2

90Th2« ~ 0.1 s 7.55 9-00w 8.65n 0.5
Th224 ~ 1 s 7.13 0.00 0.10 1.3
Th225 ~ 90 8.0 m 6.57 2.73 2.30 0.4
'l’h226 30.9 m 6.33 79 3.37 3.30 0.8 1 11, 12, b

6.22 19 3.99 3.80 0.6 0.74
6.095* 1.7 5.03 4.40 0.3 0.25
6.03 0.6 5.49 4.65 0.2 0.17

Th227 18.6 d 6.030 19 6.93 4.70 0.006 C

6.001 5 7.51 4.80 0.002
5.972 21 6.88 4.95 0.01
5.952 13 7.09 5.05 0.01
5.922 ~ 2 7.90 5.20 0.002
5.860 4 7.60 5.50 0.008
5.796 2 7.90 5.85 0.01
5.749 17 6.97 6.00 0.1
5.728 ~ 1 8.21 6.15 0.008
5.704 15 7.03 6.25 0.2
5.651 ~ 2 7.90 6.55 0.05

Til228 1.90 y 5.421 71 7.93 7.80 0.8 1 4, 53, b
5.338 28 8.33 8.25 0.8 1.15
5.208* 0.4 10.18 9.00 0.06 0.089
5.173 0.2 10.48 9.20 0.05 0.074
5.137* 0.03 11.30 9.40 0.01 0.018

Th229 7340 y 5.02 ~ 10 12.36 10.10 0.005
4.94 ~20 12.06 10.60 0.03
4.85 ~ 70 11.52 11.20 0.5

Th230 8- 104 y 4.682 75.5 12.52 12.30 0.6 1 54, b
4.614 24.5 13.01 12.80 0.6 0.98
4.472 0.15 15.23 13.80 0.04 0.062
4.427* 0.03 15.92 14.15 0.02 0.028

Th232 1.39-1010 y 3.98 17.64 17.80 1.6
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Table 1 (continued).

Pa rent 0 / rf T tot
Rel. a-int. log™ T l°gio 10 F References

nucleus h 0C
(°/o)

c and remarks

po226
9 1 1 a 1.8 m 6.81 2.03 1.70 0.5

Pa227 ~ 85 38.3 m 6.46 3.43 3.20 0.6
pa228 ~ 2 22 h 6.09 75 6.72 4.80 0.01

5.85 25 7.20 6.00 0.06
Pa231 3.43-104 y 5.0490 12 12.95 10.55 0.004 31, d

5.0205 23 12.67 10.65 0.01
5.006 26 12.62 10.70 0.01
4.974 1.5 13.86 10.95 0.001
4.942 24 12.65 11.15 0.03
4.925 3 13.56 11.25 0.005
4.848 1.5 13.86 11.75 0.008
4.727 10 13.03 12.60 0.4 1
4.704 0.8 14.13 12.70 0.04
4.671 1.3 13.92 12.95 0.1 0.32
4.630 0.3 14.56 13.25 0.05

1 ’227
92C 1.3 m 6.8 1.89 2.20 2.0

JJ228 ~ 80 9.3 m 6.67 2.84 2.70 0.8
TJ 229 ~ 20 58 m 6.42 4.24 3.75 0.3
JJ230 20.8 d 5.884 67.1 6.43 6.30 0.8 1 11, 12, b, e

5.813 32.1 6.75 6.65 0.8 1.1
5.658* 0.4 8.65 7.50 0.08 0.091
5.658 0.4 8.65 7.50 0.08 0.091

U231 5.5-IO“3 4.3 d 5.45 9.83 8.60 0.06
JJ232 74 y 5.318 68 9.54 9.35 0.6 1 9, 49, b

5.261 32 9.86 9.75 0.8 1.0
5.134 0.32 11.86 10.50 0.04 0.059
4.998* 0.01 13.37 11.35 0.01 0.013

TJ233 1.62-IO5 y 4.8157 83.5 12.79 12.55 0.6 1 31
4.7732 14.9 13.53 12.80 0.2 0.34
4.7174 1.6 14.50 13.20 0.05 0.093
4.4890 0.03 14.23 14.85 0.04

u234 2.5-10s y 4.763 75 13.02 12.95 0.8 1 31, 51
4.710 25 13.50 13.25 0.6 0.74
4.593 0.3 15.42 14.10 0.05 0.062

JJ235 7.1-10« y 4.58 10 17.35 14.20 0.0008
4.47 ~ 3 17.87 15.00 0.001
4.40 83 16.43 15.50 0.1
4.20 4 17.75 17.15 0.3

TJ236 2.4-IO7 y 4.50 14.88 14.85 1
’238 4.5-10» y 4.18 78 17.26 17.30 1 1 54

4.13 22 17.81 17.70 0.8 0.80
4.02 ~ 0.1 20.15 18.70 0.03 0.033
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Table 1 (continued).

Parent 
nucleus °/o« 7 tot Ea

Rel. a-int. 
(°/o) l°gio T l°8io 0 F c References 

and remarks

83N'P231 ~ 50 m 6.28 3.48 4.85 24
Np233 ~ 10"3 35 m 5.53 8.32 8.65 2.0
Np235 3.5-10-3 410 <1 5.06 12.00 11.50 0.3 34
Np237 2.20-10* y 4.872 3.1 15.35 12.70 0.003 38

4.816 3.5 15.30 13.10 0.006
4.787 53 14.12 13.25 0.1
4.767 29 14.38 13.40 0.1
4.713 1.7 15.61 13.80 0.02
4.674 3.3 15.32 14.05 0.05
4.644 6.0 15.06 14.30 0.2
4.589 0.5 16.14 14.70 0.04
4.52 0.02 17.54 15.20 0.005

94Pu232 > 2 36 m 6.58 5.03 4.00 0.1
Pu234 ~ 4 9 h 6.19 5.91 5.75 0.6
pu235 ~ 0.002 26 m 5.85 7.89 7.45 0.4
pu236 2.7 y 5.75 7.93 7.95 1
Pu238 90 a 5.495 72 9.60 9.40 0.6 1 7, 31

5.452 28 10.01 9.70 0.5 0.69
5.352 0.09 12.50 10.25 0.006 0.0087

Pu239 24360 y 5.150 69 12.05 11.50 0.3 1 31, 35, f
5.137 20 12.59 11.55 0.1 0.33
5.099 11 12.84 11.80 0.1 0.35

Pu240 6300 y 5.162 76 11.42 11.35 0.8 1 24, 31, 35, 50
5.118 24 11.92 11.70 0.6 0.62
5.014 0.1 14.30 12.35 0.01 0.012

Pu241 ~ 5-10"3 14 y 4.893 75 13.07 13.15 1.3 50, g
4.848 25 13.55 13.50 1

Pu242 ~ 5-10* y 4.898 80 13.30 13.15 0.8 1 50, h
4.854 20 13.90 13.45 0.4 0.50

96Am237 0.005 ~ 1.3 h 6.01 7.97 7.10 0.1
Am239 0.003 12 h 5.75 9.16 8.45 0.2
Am241 470 y 5.5408 0.39 12.58 9.60 0.001 6, 31, i

5.5082 0.24 12.79 9.85 0.001
5.4820 85 10.24 9.95 0.5 1
5.4391 12.84 11.06 10.25 0.2 0.31
5.3860 1.66 11.95 10.40 0.03 0.083
5.3210 0.015 14.00 10.95 0.001 0.0018
5.241 0.002 14.87 11.40 0.0003 0.00076

Am243 7.6-103 y 5.340 0.17 14.15 10.85 0.0005 6, 51, j
5.309 0.16 14.18 11.00 0.0006
5.267 87.1 11.44 11.30 0.8 1
5.224 11.5 12.32 11.55 0.2 0.25
5.169 1.1 13.34 11.90 0.04 0.052
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Table 1 (continued).

Parent 
nucleus 0 /o 7 tot i’a

Bei. a-int. 
(°/o) logio 7’ log10 7 o 7’’ c References 

and remarks

('m238 > 10 2.5 h 6.50 4.95 5.20 1.6
Cm240 26.8 d 6.26 6.36 6.35 1 50
Cm241 0.2 35 d 5.89 9.18 8.20 0.1 50
Cm242 162 d 6.110 73.7 7.28 7.10 0.6 1 3, 50, b

6.066 26.3 7.73 7.30 0.4 0.60
5.965 0.035 10.60 7.85 0.002 0.0028

Cm243 35 y 5.985 6 10.26 7.70 0.003 3, 42, 50, k
5.777 81 9.13 8.85 0.5 1
5.732 13 9.93 9.10 0.2 0.29
5.675 2 10.74 9.40 0.05

Gm244 19 y 5.798 75 8.90 8.75 0.8 1 3, 50
5.755 25 9.38 8.90 0.3 0.56

Cm245 26-103 y 5.34 11.91 11.35 0.3 50, 1

97Bk243 ~ 0.1 4.6 h 6.72 30 7.74 4.65 0.0008
6.55 53 7.49 5.45 0.01
6.20 17 7.99 7.05 0.1

Bk245 0.105 4.95 d 6.37 33 9.09 6.30 0.002 39
6.17 41 9.00 7.30 0.02
5.89 26 9.19 8.60 0.3

Bk249 ~ 0.001 290 d 5.40 12.40 11.50 0.1 37

98Gf244 ~ 25 m 7.17 3.18 3.20 1 42
Cf245 44 in 7.11 3.42 3.45 1 42
Gf24li 35.7 h 6.753 78 5.22 5.05 0.6 1 36

6.711 22 5.77 5.20 0.3 0.44
6.608 0.08 8.21 5.65 0.003 0.0046

Cf248 205 d 6.26 7.25 7.30 1.3 50
Cf249 500 y 6.19 3 11.72 7.60 0.00008 29

5.93 6 11.42 9.00 0.004
5.80 90 10.24 9.70 0.3

Cf250 ~ 10 y 6.024 83 8.58 8.55 1 1 10
5.980 17 9.27 8.70 0.3 0.35

('f262 2 u 6.112 84.5 7.87 8.05 1.6 1 10
6.069 15.5 8.61 8.25 0.4 0.30

17 253
99 1 * 19.3 d 6.633 90.2 6.27 6.00 0.5 1 42

6.592 7.7 7.34 6.10 0.06 (».13
6.545 1.8 7.97 6.30 0.02 0.050
6.493 0.3 8.74 6.60 0.008
6.25 0.05-0.1 9.35 7.80 0.03

b'Bl2521 0 0 1 1,1 22.7 h 7.04 4.91 4.60 0.5 26
Bin254 3.3 h 7.17 85 4.14 4.05 0.8 1 8. 25

7.128 15 4.90 4.15 0.2 0.26
7.034 > 0.2 6.77 4.60 0.006 0.0085
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Remarks to Table 1.

a) Briggs19 gives quite different data for Ra223.
b) The odd parity alpha groups of even-even nuclei are recognized by asterisks * placed after their Ex- 

values. The assignment 1- for the lowest odd parity state of the daughter nucleus is certain for the 
parent nuclei Th226, Th228, Th230, U230, and almost sure for the parent nucleus U232. In the alpha decay 
of Cm242, one has also found a 0+ -> 1- alpha transition (not listed here), but, in this case, the 1- 
interpretation is somewhat doubtful52. See also Note added in proof, p. 46.

c) The data on Th227 reported by Frilley et al.27 are the same as those on Th227 in HPS which are listed 
first, but Briggs’19 data are different.

d) The two alpha groups of energies 4.925 MeV and 4.630 MeV were not reported by Goldin et al.31; they 
are obtained by Hummel (private communication from Professor Perlman).

e) The two alpha groups of 5.658 MeV energy have actually not been resolved, but beta decay data indicate 
that about half of the 5.658 MeV alpha particles leave the daughter nucleus in the 4 + state and the 
other half in the 1- state (private communication from Professor Perlman).

f) The most energetic alpha group which has been observed for the parent nucleus Pu239 (i. e., the group 
with the alpha particle energy 5.150 MeV) does not appear to correspond to a transition to the ground 
state of the daughter nucleus2.

g) The decay energy of Pu241 (calculated from closed cycles) is 5.13 MeV, according to Glass et al.30. The 
most energetic alpha group which has been observed for the parent nucleus Pu241 (i. e., the group with 
the alpha particle energy 4.893 MeV) has a transition energy which is less than the decay energy by 
about 0.150 MeV, and therefore it seems probable that this alpha group does not leave the daughter 
nucleus in its ground state.

h) For the half-life of Pu242, we have used the value 5 • 105 years, which is given in HPS. The value 9 • 105 
years given by Seaborg and Katz50 is too high. New measurements have yilded a value of about 
4 • 105 years 39 a, 42.

It should also be remarked that the measurement (by Asaro) from which the values 80 % and 
20% for the relative intensities of the two alpha groups of the parent nucleus Pu242 are obtained is 
very rough (private communication from Professor Perlman).

i) There may be some uncertainty about the 5.241 MeV alpha group.
j) On the basis of experimental indication for a ground state spin 1/2 for Np239, objection has been raised 

by Stephens et al.51 against the assignment of the spin 5/2 to the level in which the alpha group with the 
alpha particle energy 5.267 MeV leaves the daughter nucleus Np239. The assignment of spin 1/2 for the 
ground state of Np239 implies, however, many difficulties for the interpretation of the level structure 
of Np239 as well as the beta decay of this nucleus 35 a.

k) The 5.985 MeV alpha group from the parent nucleus Cm243 leaves the daughter nucleus in an excited 
state which lies 76 keV above the ground state 43 a.

The state in which the 5.675 MeV alpha group leaves the daughter nucleus decays to the lowest 
state of the favoured band (in which the 5.777 MeV alpha group leaves the daughter nucleus) by an 
El gamma transition, and therefore the first of these states probably consists of two different states 
lying close together (private communication from Professor Perlman). This fact modifies an inter­
pretation which has recently been given by A. Bohr et al.15.

1) For the parent nucleus Cm245, the data given by Seaborg and Katz50 are more recent and probably 
more accurate than those given in HPS. It should also be remarked that alpha-gamma coincidence 
experiments indicate that the 5.34 MeV alpha group does not leave the daughter nucleus in its ground 
state (private communication from Professor Perlman).

Mat.Fys. Skr. Dan.Vid.Selsk. 1, no.3.
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Table 2.*
For the alpha groups of even-even nuclei, which are characterized by their an­

gular momenta I, we here list the empirical hindrance factors which we have obtained 
as private communication from Professor Perlman. The reduced transition probabi­
lities ci have been calculated as the reciprocals of these hindrance factors (except for 
the alpha group 0:3 of the parent nucleus Th223 for which C3 has been obtained from 
Table 1). From the cz-values we have then calculated the ôz-values according to (Ad 11-7) 

and (VIII-12).

Parent 
nucleus 1 Hindrance 

factor cz l>l

88Ha222 2 1.20 0.83 1.18

Ba224 2 1.20 0.83 1.19

Ba226 2 0.90 1.11 1.38

«„Th22“ 2 1.50 0.07 1.00
1 4.0 0.25 0.55

■1 7.3 0.13 0.84

'th228 2 0.90 1.11 1.37
1 10 0.10 0.35
4 12 0.083 0.09
3 0.018 0.23

Th230 2 1.0 1.00 1.30
4 9.8 0.10 0.77
1 40 0.025 0.17
0 > 8500 < 0.00012 < 0.070

Th232 2 0.80 1.25 1.47

T 1230
92l 2 1.1 0.91 1.23

1 11 0.091 0.33
4 9.0 0.10 0.70

J ’232 2 1.1 0.91 1.24
4 10 0.002 0.00
1 70 0.014 0.13
0 > 270 < 0.0037 < 0.37

(J234 2 1.2 0.83 1.18
4 14.5 0.009 0.02

JJ236 2 1.1 0.91 1.24

Parent 
nucleus 1 Hindrance 

factor q bl

T 1238 2 1.5 0.07 1.00

94Pu236 2 1.5 0.07 1.05

Pu 238 2 1.0 0.02 1.02
4 1 15 0.0087 0.22
0 385 0.0020 0.30
8 15000 0.000007 0.18

Pu240 2 1.7 0.59 0.99
4 68 0.015 0.28

96Cm242 2 1.05 0.01 1.00
4 380 0.0020 0.12
0 200 0.0038 0.30
8 4850 0.00021 0.28
1 1000 0.0010 0.035

Cm244 2 1.8 0.50 0.90
4 1000 0.0010 0.073
0 340 0.0029 0.31

98Cf24« 2 2.7 0.37 0.77
4 115 0.0087 0.21
0 320 0.0031 0.31

Cf250 2 3.0 0.33 0.73

Cf252 2 3.2 0.31 0.71
4 ~ 94 ~ 0.011 ~ 0.23

Fm2541001 111 2 4.0 0.25 0.03
4 54 0.018 0.30
0 > 800 < 0.0012 < 0.19

* Note added in proof: Somewhat more recent data are given in the review article on alpha decay 
hy Perlman and Rasmussen43“ (see their fig. 15) which will appear in Handbuch der Physik. To our 
purpose, however, the data in Table 2 can be used equally well.
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In Tabic 2 we list empirical values of the hindrance factors for the alpha groups 
of even-even nuclei, kindly communicated to us by Professor Perlman. This table 
contains some hindrance factors for alpha groups populating higher states of the 
daughter nucleus which cannot be obtained from Table 1. The reduced transition 
probabilities a in Table 2 have been calculated as the reciprocals of the hindrance 
factors listed there (except for the alpha group 1x3 of Th228 for which C3 has been ob­
tained from Table 1). With a few exceptions, the cz-values in Table 2 are in satis­
factory agreement with those in Table 1. The exceptions may be associated with 
differences in the definitions used for the hindrance factors and their reciprocals, 
which are the reduced transition probabilities c/. For the discussion of the empirical 
data in relation to the present theory, which will be given in the next chapter, it is 
better to use not the reduced transition probabilities ci themselves, but certain quan­
tities bi which are defined by (VII1-12). The Zp-values which are listed in Table 2 
have been calculated from the cz-values there by assuming the nuclear radii to be 
given by (VIII-7).

VIII. Comparison between Theory and Empirical Data.
In this chapter, we first give a brief review of the theoretical treatment devel­

oped in the Chapters III-VI, and subsequently discuss the ability of this theory to 
account for the available empirical data.

To treat the alpha fine structure problem we must describe the penetration of 
the alpha particle through the potential barrier around the deformed daughter nucleus 
by means of a wave function which takes into account the possibility for the alpha 
particle to leak out in different channels corresponding to different final states of the 
daughter nucleus. Using the center-of-mass coordinate system for the alpha particle 
and the daughter nucleus we have constructed this wave function in such a way that 
its total angular momentum is U and its angular momentum component along 
a fixed direction in space is AT), where A and Mt denote the corresponding quantum 
numbers for the parent nucleus. This wave function contains for each channel a 
function which depends on the distance r of the alpha particle from the center of the 
daughter nucleus and which will be referred to as the radial channel function. These 
channel functions satisfy a system of coupled differential equations, which has been 
derived on the assumption that the daughter nucleus possesses axial symmetry 
and can be described in terms of a rotational motion superimposed on the intrinsic 
motion of the nucleons in the deformed nuclear potential. If the small coupling causing 
transitions between different rotational bands of the daughter nucleus during the alpha 
particle penetration through the potential barrier is neglected, the differential equations 
couple only those radial channel functions which correspond to alpha groups which 
emerge from a given state (AT A) of the parent nucleus and leave the daughter nucleus 
in the same rotational band characterized by the quantum number A/. In terms of 
the alpha wave function on the nuclear surface, these differential equations determine 
the transition probabilities for the different alpha groups.

5*



36 Nr. 3

The passage of the alpha particle through the region near the nuclear surface, 
where appreciable exchange of angular momentum occurs between the alpha particle 
and the (laughter nucleus, takes place in a time which is short compared to the nuclear 
rotational period. Therefore it is in first approximation allowed to consider the nucleus 
as fixed in space, while the alpha particle traverses this interior region. An approximate 
solution of the problem concerning the penetration of an alpha particle through such 
a potential barrier fixed in space can be obtained by means of an approximation 
procedure which has been described in a qualitative way in Chapter VI, and which 
is developed more rigorously in Appendix B. Using this approximation method, one 
finds that in the interior part of the potential barrier of a deformed nucleus the alpha 
wave function can in first approximation be calculated from the alpha wave function 
on the nuclear surface by means of a formula which represents a generalization of 
the well-known formula for the spherically symmetric potential barrier.

In the outer part of the potential barrier and outside of this barrier the Coulomb 
field around the daughter nucleus is almost spherically symmetric, and there is then 
practically no coupling between the different channels into which the alpha particle 
is able to leak out. Therefore, the passage of the alpha particle through this outer 
region takes place approximately in the same way as the passage of an alpha particle 
of given energy through a spherically symmetric potential barrier, the alpha transition 
energy being that corresponding to the channel considered. Except for constant factors, 
one can therefore in the outer region easily find the radial channel functions which 
correspond to outgoing waves.

Assuming that there exists an intermediate region around a spherical surface of 
radius 7?i, where the above approximations for the interior and exterior regions both 
apply, we can determine the unknown constant factors which appear in our approx­
imate solution for the outer region by matching this solution to that for the interior 
region at the spherical surface r = IR . In this way, the radial channel functions are 
determined in the whole space outside the nuclear surface. They depend, of course, 
on the boundary conditions for the alpha wave function on the nuclear surface.

By applying the approximation procedure outlined above to the alpha transition 
from the state (A, A\) of a given parent nucleus to the state (If, K/) of its daughter 
nucleus, we have in Chapter VI found that, for r> Z?i, the radial channel function 
fKf,i,if(r^ corresponding to the angular momentum / is given by (VI-12), the 
transition probability PKf,if is given by (VI-13), and the angular distribution of 
the alpha group considered is given by (VI-14). Thus it is seen that the alpha decay 
depends on a quantity B, defined by (VI-9), which is a measure of the quadrupole 
deformation, and on the expansion coefficients ai of the function yi, defined by (VI-10), 
which depends on the alpha wave function on the nuclear surface, ipo, as well as on 
the higher multipoles of the nuclear surface. The further dependence on the transition 
energy, the atomic number, the nuclear radius, and the quantum numbers Kf,Ii, 
and If should also be mentioned.

Instead of considering the transition probabilities it is convenient to introduce 
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th e so-called reduced transition probabilities in which the strong energy dependence 
has been separated oil’. In the definition used in Chapter VII, this energy dependence 
has been taken directly from the empirical data on the ground state alpha transitions 
of even-even nuclei. This definition of the reduced transition probabilities is con­
venient when one deals with the empirical data, but in more theoretical connections it 
is often advantageous to choose a slightly different definition according to which the 
energy depending factor to be separated off is taken from the well-known theory for the 
penetration of an alpha particle of angular momentum zero through a spherically sym­
metric potential barrier. For practical purposes, it is in general unnecessary to distin­
guish between these two definitions, for they give approximately the same numerical 
results, unless the energy differences of the alpha groups considered are too large.

In the following sections, we chiefly discuss the alpha decays of even-even nuclei 
and the favoured alpha decays of odd-A nuclei. For these alpha decays the alpha 
particle is formed with Q = 0. In order to simplify the notations we shall, therefore, 
in general write kt i(B) instead of k^ i>(B) and at instead of 0.

a. Ground state alpha transition in even-even nuclei.
According to Chapter VI, the alpha decay of an actual nucleus takes place in 

the same way as that of a fictive nucleus with the purely ellipsoidal surface

«(#') = 7?o(l+& y2)0(O (VIII-1)

on which the alpha wave function is equal to yi (&') and outside of which the electro­
static potential is assumed to be equal to the sum of the spherically symmetric poten­
tial and the pure quadrupole potential of the actual nucleus. The angular dependence 
of y>i (#') is due both to the higher multipoles in the nuclear deformation and to the 
variation of the alpha wave function on the nuclear surface. For the ground state 
alpha transition probability of an even-even nucleus we obtain

F’o, o = fo
C 7?o V 

(Fo, Bo)/
Y ko, i (B) (ii

I

2
(VIII-2)

as a special case of (VI-13). The quantities ai appearing here are the coefficients in 
the expansion of ipi ($') in terms of the spherical harmonics Yito($')- From (VIII-2) 
we find that, if we assume yi (&') to be independent of and to remain constant 
while ß2 varies, the ellipsoidal deformation of the nucleus causes the ground state 
alpha transition probability to be enhanced by the factor*

I* 1
\ eB Pi dx
Jo

* The enhancement factor (V1II-3) has been obtained on the assumption that Ra remains constant 
as ß2 varies. There is a slight difference between this enhancement factor and that corresponding to constant 
nuclear volume for varying ß2, but for our purpose the difference is unimportant.

Mat. Fys. Skr. Dan.Vid. Selsk. 1, no.3.

(/.•„,0(B))2_ I (VI11-3)
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were the first to point at the importance of the nuclear deformation for alpha decay, 
estimated the enhancement very roughly and obtained an expression which in our

which increases a;s 1 increases, i. e., as | ß2 | increases. Hili, and Wheeler33, who

notations reads
Maxe2SPs(cosd) ; (VIII-4)

&

however, this expression overestimates the enhancement considerably*.  By means of 
a straightforward improvement of the considerations used by Mill and Wheeler 
one may replace their expression for the enhancement by

* On the basis of numerical calculations, the increase in the alpha decay rate due to the nuclear 
deformation has been discussed by Rasmussen and Segall45 who obtained much smaller enhancement 
factors than Hill and Wheeler33. Their results seem to be consistent with ours, but a detailed comparison 
is difficult because of different boundary conditions for the alpha wave function.

4 n .
• 0

•
I e2 BP, _ WzPP.te) ^.-^„(2«),

• 71
(VIII-5)

but also this expression overestimates the effect, as is easily seen by comparing (VIII-5) 
with (VI11-3) and using Schwarz’s inequality.

For different values of B, we give in Table 3 the deformation parameter ß2, the 
intrinsic quadrupole moment Qo, and the value of the enhancement factor according

Table 3. Calculated values of the enhancement factor for different 
nuclear deformations and in different degrees of approximation.

Qo
(IO“24 cm2) ßt B

Enhancement factor 
according to

(V H1-3) (VI11-5) 1 (VIII-4)

- 18.8 — 0.35 - 3 3.49 5.93 20.1
- 12.5 - 0.24 _ 2 1.88 2.67 7.4
— 6.3 - 0.12 - 1 1.20 1.37 2.7

0 0 0 1 1 1
6.3 0.12 1 1.24 1.55 7.4

12.5 0.24 2 2.41 5.11 54.6
18.8 0.35 3 6.93 23.98 403.4

to the correct formula (VIII-3) as well as according to (VIII-4) and (VIII-5). The 
values of ß2 have been obtained from the approximate formula

B * 8.5 ß2 (VIII-6)

which is found to be fulfilled to within 10 °/0. This formula follows from (VI-9) and 
the empirical alpha decay data for even-even nuclei, if the nucleus is assumed to be
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uniformly charged (i. e., ço = 1) and the radius Po of the daughter is assumed to be 
given by t

Ro = 1.44 . 1()-13 (A-4ÿcm, (VIII-7)

where A is the mass number of the parent nucleus. The values of the intrinsic qua­
drupole moment Qo given in Table 3 have been calculated from (VI-2) and (VIII-7) 
by assuming that qo = 1 , Z-2 = 90, and A-4 = 230.

There is a certain ambiguity in the choice of the radius Ro, and there may be 
some reasons for choosing Ro somewhat smaller than according to (VIII-7), e. g.,

Ro = 1.2 • 10"13 (A-4ÿ cm. (VIII-8)

The choice of such a smaller radius would, however, not change the qualitative con­
clusions which we shall arrive at in this chapter. The larger radius (VIII-7) appears 
to represent the extension of the range of interaction between the alpha particle and 
the daughter nucleus13. For the estimate of from the electric quadrupole moment 
Qo a somewhat smaller radius should be employed. With the present accuracy of 
the Qo-values this point is, however, of minor significance.

Empirically it is known that the probabilities for the ground state alpha tran­
sitions of even-even nuclei can be represented with good approximation (within a 
factor of about 2) by a smoothed out function Po (Z, Eo) which depends only on the 
atomic number Z of the parent nucleus and on the alpha decay energy Eq. This 
function can easily be obtained from the formula

where To is the smoothed out half-life function (depending on the atomic number Z 
of the parent nucleus and on the alpha particle energy Ea) which has been determined 
in a semi-empirical manner in Chapter VII. The variation of the enhancement factor 
with the nuclear deformation should obviously affect the function Po (Z, Eq) . From 
Coulomb excitation data it has been found that Qo ~ 10 for the heavy elements around 
U. (See the review article by Alder et al.1.) For these Qo-values the correct enhance­
ment factor (calculated from (VI11-3)) is about 2 according to Table 3. A factor in 
Po (Z, Eo) of at most this order of magnitude and varying slowly with Z and A is 
difficult to separate from other causes for dependence of Po on Z and A and from 
experimental uncertainties. From this fact and the assumption that the alpha particle 
formation probability does not depend especially strongly on the nuclear deformation, 
we obtain an explanation of the very reasonable values which one obtains for the 
nuclear radii from Pq (Z, Eo) by means of the simple Gamow theory. With the same 
assumption, the large factor (VIII-4) estimated by Hill and Wheeler33 and amount­
ing to ~ 40 (cf. Table 3) should have been easily detectable in the behaviour of the 
function Po (Z, Eo) and the nuclear radii calculated from it in the usual way.

6*
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b. Even parity alpha transitions in even-even nuclei.
Most of the alpha groups which have been found in even-even nuclei arc of 

the even parity type for which the nuclear transitions are OH—> 0+, 2+, 4+, . . . . 
'The alpha groups corresponding to these transitions arc denoted by ao, ä2, ä4, • • , 

respectively. The transition probability Po,i for the group oci is given by the formula

Po, i = Vi ' b’o (A'z, A?o)/
VA-!,; (B)«r
r

(vni-io)

which is obtained by specializing (AT-13) to the case that It = Kf = 0 (which implies 
that the alpha wave function on the nuclear surface contains only the angular moment­
um component £? = ()). Instead of using Po,i itself, we prefer to use the corresponding 
reduced transition probability a which we define as the quotient of />o,z(E'z) and 
Po,o(Ez), where the explicitly denoted dependence on Ei indicates that not only Po, i 
but also Po.o shall be calculated for the transition energy Ei of the group az. From 
the formula (VIII-10) we then gel

ci =
Az, z'(B)«z'

V_________
x Ao, i’(B)ai' 
r

x r i «o j ’ (VIII-11)

if we note that it is only through the function Go (Ei, Ro) that the expression (VIII-10) 
for Pq,i depends essentially on Ei. Il is useful to carry the reduction of the alpha 
transition probabilities for even-even nuclei one step further and to separate away 
not only the energy dependence, but also the /-dependence which is due to the ordinary 
centrifugal barrier. To this purpose, we introduce, instead of a, a quantity bi which 
we define by

; ./" U('+1)bi = |/cz exp (VIII 12)

From this definition and the theoretical formula (VIII-11) for ci we then get

bi =
x Az, z' (B) (ii’
i'__
5, Ao, i' (B) ai'
i'

(VII1-13)

For the quantities Az,z' (B) corresponding to even values (0, 2, 4, 6, 8, . . .) of 
both / and /' we give the following numerical results, written in matrix form:
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Å(-3) =

/ = 0
1.87

- 1.41
0.64

-0.21
0.06

/ = 2
-1.41

1.51
- 1.02

0.47
- 0.16

/ = 4
0.64
1.02
1.30

- 0.95
0.45

/ = 6
-0.21

0.47
- 0.95

1.28 
-0.95

/ = 8
0.06

-0.16
0.45 

-0.95
1.29

1.37 - 0.84 0.28 -0.07 0.01
-0.84 1.07 - 0.61 0.21 -0.05

Å-(-2) =
0.28 - 0.61 0.99 -0.60 0.21

-0.07 0.21 - 0.60 0.99 -0.60
0.01 - 0.05 0 21 -0.60 1.00

1.09 - 0.41 0.07 - 0.01 0.00
-0.41 0.89 - 0.32 0.06 -0.01

Â(- 1) =
0.07 - 0.32 0.89 -0.31 0.06

-0.01 0.06 - 0.31 0.89 -0.31
0.00 -0.01 0.06 -0.31 0.89

Å- (0) = t he unit matrix, i. e., ^,/'(0) = åi,i'

1.11 0.55 0.11 0.01 0.00
0.55 1.56 0.54 0.10 0.01

Å (l) =
0.11 0.54 1.49 0.53 0.10
0.01 0.10 0.53 1.48 0.52
0.00 0.01 0.10 0.52 1.48

1.55 1.53 0.59 0.15 0.03
1.53 3.03 1.77 0.60 0.14

Å- (2) = 0.59 1.77 2.82 1.67 0.58
0.15 0.60 1.67 2.76 1.65
0.03 0.14 0.58 1.65 2.76

2.63 3.56 1.95 0.71 0.20
3.56 6.58 4.79 2.23 0.76

Å- (3) =
1.95 4.79 6.17 4.46 2.10
0.71 2.23 4.46 5.95 4.37
0.20 0.76 2.10 4.37 5.93

/ = 0 / = 2 l = 4 l = 6 / = 8
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From the empirical data on the alpha decays of even-even nuclei, Perlman and 
co-workers obtained the hindrance factors which are listed in Table 2. In this table, 
we have also listed the corresponding empirical cz-values which are the reciprocals 
of the hindrance factors, and the frz-values which we have obtained from the empirical 
cz-values according to (VIII-12), assuming 7?o to be given by (VIII-7). The empirical 
knowledge thus obtained about the frz-values for the even parity alpha groups of 
even-even nuclei is summarized in fable 4. It is seen that bz decreases as Z increases, 
/>4 has a sharp minimum for Z = 96, and b6 has a broad maximum at about Z = 96. 
Also b8 is rather large for this Z-value, but there is not much known about its vari­
ation with Z. We shall now discuss this empirical evidence in connection with

Table 4. Survey of the empirical bz-values for the 
even parity alpha groups of even-even nuclei.

Parent 
nucleus

*2

Ra 1.2-1.4
Th 1.0-1.5 0.7 0.9 < 0.1
U 1.0-1.3 0.6 -0.8 < 0.4
Pu 1.0 0.2-0.3 0.3 0.2
Cm 1.0 0.1 0.3-0.4 0.3
Cf 0.7-0.8 0.2 0.3
Fm 0.6 0.3 < 0.2

the theoretical formula (VIII-13). From this formula it is seen that the Zp-values for 
the even parity alpha groups depend only on the coefficients do, «2, «4, • • • and on 
the matrix elements Â’z,z' (B) corresponding to even values of I and /'. Because of the 
appearance of the sign for the absolute value on the right-hand side of (VIII-13), it 
is also clear that, even if B is assumed to be known, one cannot determine r/o, «2, «4, • • . 
uniquely from the empirical Zp-values (for even /). Therefore it seems most reason­
able to proceed by making simple assumptions about the shape of the nuclear surface 
and the alpha wave function on this surface, and to see to what extent one can 
understand the empirical data on the basis of such assumptions. According to the 
formulae in Chapter VI, it is not possible to separate the effect of the nuclear shape 
from that of the alpha wave function on the nuclear surface, yo- If y>o is assumed not 
to change sign, it is also seen that this function can be replaced by a constant if at 
the same time the values of the actual deformation parameters ß/_ are replaced by 
certain effective values. In the following, we therefore assume ipo to be constant, but 
we must remember the effective nature of the nuclear deformation parameters ß%. 
We shall now make some simple assumptions about the effective nuclear shape and 
discuss the ôz-values thus obtained in relation to the empirical bz-values.

We first consider the simple assumption that the shape of the nuclear surface 
is due to a pure quadrupole deformation and that the alpha wave function on this 
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surface is constant. The coefficients ai are then equal to zero for I 4= 0, and from 
(VIII-13) and the numerical values of Å'z.o (B) for even / we get the frz-values which 
are listed in Table 5 for different values of B. The /^-values corresponding to these 
B-values have been obtained by means of the formula (VU 1-6). From Qo-values 
obtained from Coulomb excitation data it follows that, for the nuclei around Th and U, 
the actual deformation parameter ßz has values of about 0.25. Empirically there is 
not much known about the variation of /?2 with Z in the region of the very heavy 
elements, but for the moment we shall assume that ß% increases slightly with Z. Hence, 
we shall compare the empirical ôz-values in Table 4 with those theoretical bz-values 
in Table 5 which correspond to /^-values lying in the neighbourhood of 0.25 and

Table 5. Theoretical values of 1)2, b±, be, and b$ for the case that 
the nuclear surface possesses a pure quadrupole deformation 

and the alpha wave function is constant on this surface.

ßt B ^2 *4 l>e I’s

— 0.35 - 3 0.70 0.34 0.11 0.03
- 0.24 _ 2 0.01 0.20 0.05 0.01
- 0.12 - 1 0.38 0.07 0.01 0.00

0 0 0 0 0 0
0.12 1 0.49 0.10 0.01 0.00
0.24 2 0.98 0.38 0.09 0.02
0.35 3 1.35 0.74 0.27 0.08

increasing slightly with Z. The calculated ^-values are of the right order of magnitude, 
but their slight variation with ^2 is opposite to and less than what we should expect 
from the variation of the empirical ^-values with Z. The calculated Z>4-values have 
very roughly the right order of magnitude, but do not show the observed variation with 
Z. In fact, the calculated Zq-values increase slightly with ^2, whereas the empirical 
l)4-values change fairly rapidly with Z and have a sharp maximum for Z = 96. The 
calculated Z?6-values increase slightly with ^2, whereas the empirical 56-vaIues have 
a broad maximum at about Z = 96. Furthermore, the calculated b6-values are smaller 
than the largest empirical Z?6-values. The /?8-values are empirically known only for two 
isotopes having the atomic numbers Z = 94 and Z = 96, and these &8-values are consi­
derably larger than the small bs-values which we have calculated. Summarizing these 
results we see that, on the basis of the above simple assumption, we get the right order 
of magnitude for 1)2, whereas the higher bz-values deviate the more from the corre­
sponding empirical values, the higher I becomes. Furthermore, the empirically found 
variations of bi with Z are not reproduced by the calculated Z?z-values for any I.

We next assume the shape of the nuclear surface to be due to both a P2- 
deformation and a P4-deformation. The alpha wave function on the nuclear surface 
is still assumed to be constant. In a similar way as we have previously characterized
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the P2-deformation by the quantity B, defined by (VI-9), we now characterize the 
/^-deformation by a quantity C which we define by

in the parenthesis on the right-hand side of this expression we may approximately 
neglect the second term. By using (VI-9) and (VIII-6) we then get the following 
approximate connection between C and /C :

C * 2 B ß4 * 17^4. (VIII-15)
P2

According to (VI-10) and (VI11-14), we can express ^1 W in terms of C as follows:

($) = e cy4,o (^) = ^O{1 +CY4,o(#) i i C2(V4,o W)2+ . . •}=_>> Vz.o(^),
i

where
oo = yzo(3.54 + 0.14 C2 4- . . .) 
(i2 = y’o (0.08 C2 4 ... )
04 = W (C + 0.07 C2 I- . . . )
(la = V>o (0.07 C2 4 . . . )
«8 = Vo (0.12 C2 4- . . . )

(VII1-16)

For comparatively small values of C (e.g., lor C ~ 1), the bz-values can now be cal­
culated by substituting the series expansions (VII1-16) into the theoretical formula 
(VIII-13). If ^2 is assumed to be equal to the actual deformation parameter ß2 which 
we, for the sake of simplicity, assume to have a constant value of about 0.24 (cor­
responding to B = 2) throughout the whole region of the very heavy nuclei*,  and if 
ß4 (^ C/17) is determined such that the calculated b4-values agree with the empirical 
t4-values, we find the result shown in Table 6. Actually, there exists more than one 
possible C-value for every Z-value, but we have more or less arbitrarily required 
that I C’l shall not exceed 1, and, on this assumption, the determination of the C-values 
(in Table 6) from the empirical Z?4-values is unique. The magnitudes of the calculated 
/?2-values as well as their decrease with increasing Z in the region from Th to Cm 
are in reasonable agreement with the empirical b2-values, but the slight increase with 
Z of the calculated ^-values in the region from Cm to Fm is not in quite satisfactory 
agreement with the behaviour of the empirical /^-values in this region. 1 he calculated 
/?6-values differ from the empirical Z>6-values both as regards the orders of magnitude 
of these values and their variation with Z. It is also seen that the calculated bg-values

* For our later qualitative conclusions it is quite unessential whether ß2 is here considered to be 
constant or changing slightly with Z.
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Table 6.
Values of C, fit C/17), bï, b^, and b$ obtained by adjusting 

(' such that the calculated ^-values agree with the correspond­
ing empirical values. Here B has been assumed to be constant 
and equal to 2 (which corressponds to 0.24) for all the nuclei 

considered.

Parent 
nucleus

bt
(emp.) C ßi be b8

Th 0.8 0.90 0.053 1.18 0.39 0.16
U 0.7 0.67 0.039 1.14 0.31 0.12
Pu 0.25 - 0.28 - 0.016 0.92 0.02 0.00
Cm 0.1 - 0.64 - 0.038 0.86 0.06 0.01
Cf 0.2 - 0.40 - 0.024 0.90 0.01 0.01
Fin 0.3 - 0.16 - 0.009 0.95 0.05 0.00

for the parent nuclei of Pu and Cm arc appreciably too low. By considering both 
/?2 B/8.5) and ßi C/17) as adjustable parameters, and determining them such
that the calculated values of 1)2 and hi shall agree with the corresponding empirical 
values, we have found the figures in Table 7. The table shows that the effective de­
formation parameter ^2 is constant in the region of daughter nuclei between Ra and 
Pu, but decreases with increasing atomic number in the region of daughter nuclei 
above Pu. In connection with this result it may be noted that calculations of the nuclear 
quadrupole deformations indicate that the actual deformation parameter @2 increases 
slightly as one goes from Ac to Am, but may perhaps begin to decrease with increasing 
atomic number in the region above Am (private communication from Dr. Nilsson). 
It must, however, be borne in mind that our effective deformation parameter /?2 may 
diller from the corresponding actual deformation parameter for the nuclear surface. 
The ô6- and &8-values in Table 7 behave essentially in the same way as the corre­
sponding values in Table 6, and they deviate considerably from the empirical values. 
Hence, it is not sufficient to assume only the two deformation parameters /h and /%

Table 7. Result of adjusting the parameters B(^8.5/?2) and C (^ 17 ^4) such 
that the calculated values of b2 and hi shall agree with the corresponding 

empirical values.

Parent 
nucleus B ßz C ß< b2 b. b& ^8

Th 2.2 0.26 0.7 0.041 1.28 0.78 0.39 0.14
U 2.2 0.26 0.5 0.029 1.24 0.68 0.32 0.11
Pu 2.2 0.26 - 0.4 - 0.024 1.02 0.24 0.14 0.02
Cm 2.2 0.26 - 0.7 - 0.041 0.96 0.11 0.06 0.00
Cf 1.5 0.18 0.0 0.000 0.73 0.22 0.03 0.01
Fm 1.2 0.14 0.4 0.024 0.65 0.30 0.09 0.02
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to be different from zero. A rough estimate indicates that ß6- and ß8-values of the 
order of magnitude of 0.02 should be employed to account for the large t>6- and b8- 
values which have been found empirically for the parent nuclei of Pu and Cm.

By means of Coulomb excitation experiments one could (at least in principle) 
obtain further information on the higher order multipole deformations which have 
been considered in this section, and also on the possible nuclear pear-shape which 
will be considered in the following section.

Fig. 3. Two possibilities for the shape of a strongly deformed nucleus.

The circle represents r = Rq
The full-drawn curve represents r = Rq (1 + 0.25 ¥2,0 (#'))
The dotted curve represents r = 7?q (1 + 0.25 ¥2,0 (#')+0.05 1’4,0 (#'))

c. Odd parity alpha transitions in even-even nuclei.

The even parity alpha groups ao, Otø, . . . which we have discussed in the previous 
section are characteristic of all the strongly deformed even-even alpha emitters. For 
some isotopes of Th and U (and for Cm242) one has found also odd parity alpha 
groups 52. 53 which correspond to the nuclear transitions 0+->l—,3-,... and which 
will be denoted by ai, 1x3, . . . , respectively. The knowledge available on these odd 
parity alpha groups and on the corresponding odd parity states in the daughter nuclei 
is collected in the Tables 8 and 9*.  The relatively small excitation energies of the 1-

♦Note added in proof: More recent data on the alpha groups populating the 1-states found in some 
even-even nuclei are given in the forthcoming review article on alpha decay by Perlman and Rasmussen43“ 
(see their fig. 15). In addition to improvements of the data in our 'fables S and 9, they give data on the 
0-t—> 1- transitions of the parent nuclei Ra222 and Ra224.
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Table 8. Data (from Stephens et al.52) on the 1- states which have 
been found in some even-even daughter nuclei.

Alpha decaying 
parent nucleus

Excitation energy 
of the 1-state 

in the daughter 
nucleus 
(keV)

Hindrance factor 
of the a-group 
going to the 
1- state in the 

daughter nucleus

Degree of 
certainty of the 

1- assignment

Th226 242 4.0 certain
Th 228 217 10 certain
Th 230 253 40 certain
U230 232 11 certain
JJ232 326 70 almost sure
Cm242 605 1000 somewhat doubtful

states indicate that these states have the same individual particle configuration as the 
even parity states. There is also other evidence52 that the odd parity alpha groups 
leave the daughter nucleus in a rotational band with Ay = 0 and that therefore the 
corresponding alpha particles are formed with Ï2 = 0. The odd parity states may be 
due to a soft asymmetric vibration of the type ^313, o(^') in the shape of the nuclear 
surface. (See, for instance, the review article on Coulomb excitation by Alder et al. h) 
A special case of such a vibration is that of a nucleus which is pear-shaped in equili­
brium and which may oscillate between the mirror shapes. Because of the rather 
long period for the vibrational motion it appears possible to consider the deformation 
parameter ^3 as approximately constant during the penetration of the alpha particle 
through the interior part of the potential barrier. Since the shape of the nuclear sur­
face is expected to be more important for the alpha decay than the anisotropy of the 
electrostatic field, the formula (VII1-10) can be used approximately also for the odd

Table 9. Empirical bz-values for the odd parity 
alpha groups of even-even nuclei.
(The ôj-values are taken from Table 2).

Parent
nucleus ^3

Th226 0.55
Th228 0.35 0.23
Th230 0.17
TJ230 0.33
U232 0.13
Cm242 0.035

parity alpha groups, even though it has been derived on the assumption that the 
differential equations for the alpha penetration problem do not couple the alpha 
groups going to different bands of the daughter nucleus. By defining ci and bi for the 
odd parity alpha groups in the same way as for the even parity alpha groups we
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then see that also the formulae (VIII-11), (VIII-12), and (VIII-13) apply to the odd 
parity alpha groups. The quantities kit i'(ß) which appear in these formulae are dif­
ferent from zero only if I and I' are either both even or both odd*.  For odd values 
(1, 3, 5, 7, . . .) of both I and /' we give the following numerical values of Å/_ r (H), 
written in matrix form :

* Therefore the ^-values for the even parity alpha groups depend on a0, a2, o4,. . . , but not on 
a4, a3, a5, . . ., whereas the /»/-values for the odd parity alpha groups depend on both these two sets of «/-values.

Â-(-2) =

À'(-l) =

Â(-3) =

1 = 1 / = 3 / = 5
0.61 -0.68 0.37

- 0.68 1.20 -0.92
0.37 -0.92 1.28

-0.14 0.44 -0.94

0.62 - 0.49 0.19
-0.49 0.97 - 0.59

0.19 -0.59 0.99
- 0.05 0.21 -0.59

0.73 -0.30 0.05
-0.30 0.88 -0.31

0.05 -0.31 0.89
-0.01 0.06 -0.31

I = 7
-0.14

0.44 
-0.94

1.28

- 0.05
0.21

-0.59
1.00

-0.01
0.06

-0.31
0.89

À'(0) = the unit matrix, i. e., /cz,r(O) =

À" (1 ) =

1.60 0.58 0.10 0.01
0.58 1.51 0.53 0.10
0.10 0.53 1.48 0.52
0.01 0.10 0.52 1.48

k (2) =

2.92 1.85 0.64 0.17
1.85 2.91 1.70 0.58
0.64 1.70 2.78 1.66
0.1 7 0.58 1.66 2.76

Å- (3) =

5.82 4.83 2.32 0.79
4.83 6.42 4.59 2.14
2.32 4.59 6.02 4.39
0.79 2.14 4.39 5.92

/ = 1 / = 3 / = 5 / = 7
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By assuming the alpha wave function on the nuclear surface, yo (#'), to be con­
stant and by using (VI-10), (VI-11), and (VIII-13), we obtain to first approximation

and

bi
A’1,3 (B) £3

^0,0 (B) «0

^’1,3 (B)

^0,0 (B)
X I ß3

bä ^3,3 (B) 
bi" klt3(B)

I ß3 \ being understood as an average value of | ß3 |. Substituting appropriate numerical 
values in these two formulae, we get

and
|/?3| ~ 0.05/91

From the estimate of | ß3 | and the ôi-values in Table 9 we find that | ß3 | ~ 0.01 to 0.03 
for the daughter nuclei corresponding to the parent nuclei of Th and U, and that | ß3 | 
~ 0.002 for the daughter nucleus corresponding to the parent nucleus Cm242. The 
estimate of b3/bi can at present be tested only for the parent nucleus Th228 for which 
b3/bi = 0.23/0.35 = 0.60 according to Table 9*.  For other parent nuclei for which the 
alpha group ai has been found, the estimate af b3/bi may give information about the 
possibility of detecting the alpha group a3.

* Note added in proof: Quite recent, unpublished data on odd parity alpha transitions in even-even 
uclei indicate similar discrepancies between the theoretical and empirical values of b3/bl to those for the 
arent nucleus Th228 (private communication from Dr. Mottelson).

Mat. Fy s. Skr. Dan.Vid. Selsk. 1, no. 3.

d. Favoured alpha transitions in odd-A nuclei.
An especially interesting type of alpha decay is the favoured alpha decay which 

is characterized by the alpha particle being formed from paired nucleons moving in 
orbitals differing only in the sign of the angular momentum component along the 
nuclear axis15. In this type of alpha decay, the alpha particle is therefore formed with 
the angular momentum component ß = 0, and hence the daughter nucleus is left in 
a band with Kf = Ki. The alpha decay of an even-even nucleus is of the favoured 
type. The same is also true for the alpha decay of an odd-A nucleus if the last odd nu­
cleon moves in the same orbital in the daughter nucleus as in the parent nucleus. All 
the favoured alpha groups of odd-A nuclei which have been identified have even parity.

Nucleons occupying states which differ only in the sign of the angular momentum 
component along the nuclear axis interact especially strongly due to the large overlap 
of their wave functions. Hence it is most probable for an alpha particle to be formed 
from such paired nucleons, i. e., favoured alpha decay is intrinsically more probable 
than other types of alpha decay. The actual alpha transition probabilities are, however, 

7
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strongly affected by the potential barrier, and in many cases they are therefore much 
smaller for the favoured than for some unfavoured alpha groups.

Because of the large intrinsic probability for favoured alpha decay, the favoured 
alpha groups of even parity emerging from an odd-A nucleus are recognized by the 
fact that their F-values (see Chapter VII) are comparatively large, being less than 1, 
but still of this order of magnitude for small spin changes. Thus, the F-value for the 
special alpha group of this type which corresponds to the nuclear transition involving 
no change of spin is found to be about 0.5 on the average (see Table 1). We may 
express this fact simply by saying that for odd-A nuclei the favoured alpha groups 
of even parity are intrinsically hindered by a factor of about 2 compared with the 
corresponding alpha groups for even-even nuclei.

For favoured alpha decay the alpha wave function on the nuclear surface, 
(&''), contains only the angular momentum component £? = 0 and is therefore 

axially symmetric with respect to the nuclear axis. This fact implies that the coef­
ficients at o defined by (VI-11) are different from zero only for £? = 0. For favoured 
alpha groups the formula (VI-13) therefore becomes

x Y Z'z, r (Ö) ar 
i'

(VIII-17)

We define the reduced transition probability CKf,if for the favoured alpha 
transition (Ah, /«) -> (Ay, Zy) as the quotient of the probability for this favoured alpha 
transition and the probability for the favoured alpha transition which involves no 
change of spin and parity, where the latter probability is corrected such that it corre­
sponds to an alpha transition energy equal to that for the transition (Ah, A) If).
From this definition and (VIII-17), and the fact that the essential energy dependence 
in this expression for PKf,if enters through Go(Eif,Ro), we get

where

2 c;
I __
Yc, 0 | AJ; A, Ay)2’ ’
i

(VIII-18)

ci = ar
i'

(VIII-19)

In the numerator of (VIII-18) the sum over / is restricted either to only even /-values 
or to only odd /-values depending on whether the parities of the parent and daughter 
nuclei are the same or the opposite (cf. the last few lines in this section). In the deno­
minator of (VIII-18) the sum over / is always restricted to only even /-values.

'file favoured alpha decay of odd-A nuclei must in many respects be very 
similar to that of even-even nuclei. Il would therefore be natural to assume that, 
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for favoured alpha decay of an odd-A nucleus, the alpha wave function on the nuclear 
surface, ipo (&'), could be calculated by interpolating the corresponding functions 
W (&') for neighbouring even-even nuclei to the Z-value of the odd-A nucleus con­
sidered. However, according to the formulae (VIII-10) and (VIII-17), this assumption

Table 10. Data on those favoured alpha decays for which one can test the formula 
which relates the relative intensities of the favoured alpha groups of an 
odd-A nucleus to the relative intensities of the alpha groups of neighbour­
ing even-even nuclei.

Parent 
nucleus Kf = Ki = h (MeV)

cKf,If 
emp.

<7 CV/ 
theor.Z = 0 Z = 2 I = 4 / = 6

3/2 4.727 1 1
„i Pa231 3/2 5/2 4.671 0.32 1 0.87 0.091 0.38

7/2 4.593 (calc.) 0.23

5/2 4.8157 1 1
,2U238* 5/2 7/2 4.7732 0.34 1 0.83 0.071 0.31

9/2 4.7174 0.093 0.13
11/2 4.650 (calc.) 0.018

1/2 5.150 1 1
94Pu239 1/2 3/2 5.137 0.33 1 0.65 0.011 0.0026 0.26

5/2 5.099 0.35 0.39
7/2 5.070 (calc.) 0.0049

5/2 5.4820 1 1
7/2 5.4391 0.31 0.24

95Am241 5/2 9/2 5.3860 0.083 1 0.59 0.0040 0.0031 0.083
11/2 5.3210 0.0018 0.0016
13/2 5.241 0.00076 0.0013

5/2 5.267 1 1
95Am243 5/2 7/2 5.224 0.25 1 0.59 0.0040 0.0031 0.24

9/2 5.169 0.052 0.083
11/2 5.102 (calc.) 0.0016

5/2 5.777 1 1
96Gm243 5/2 7/2 5.732 0.29 0.57 0.0017 0.0033 0.23

9/2 5.674 (calc.) 0.080

7/2 6.633 1 1
172539 9 1 7/2 9/2 6.592 0.13 1 0.29 0.014 0.0022 0.11

11/2 6.545 0.050 0.033
13/2 0.0034

Note added in proof: Recently, Goldin et al.31" have investigated the decay af U233 and observed two 
new alpha groups corresponding to transitions to the states of the daughter nucleus with spins 11/2 and 
13/2. The intensity values, which are given with large uncertainties, are only in qualitative agreement with 
the formula (VII1-18).

7*
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does not account for the previously mentioned hindrance by a factor of about 2 for 
the favoured alpha groups of even parity in odd-A nuclei. Therefore we make the 
somewhat more complicated assumption that, for favoured alpha decay of an odd-A 
nucleus, the function y?o (#') is equal to the function which one obtains by first inter­
polating the corresponding functions (&') for neighbouring even-even nuclei to the 
odd-A nucleus considered and then multiplying the resulting function by an angular- 
independent factor having an absolute value of about 0.7 (= j/0.5). According to 
(VI-10), (VI-11), (VIII-11), and (VIII-19), the quantities q for our odd-A nucleus 
are then proportional to the reduced alpha transition probabilities ci for even-even 
nuclei, interpolated to the odd-A nucleus considered. In the formula (VIII-18) we 
may therefore simply replace the revalues by these interpolated reduced transition 
probabilities c/. In this way, we get an intensity formula which makes it possible to 
calculate the reduced transition probabilities for the favoured alpha groups of odd-A 
nuclei on the basis of the empirically determined reduced transition probabilities a 
for the alpha groups of even-even nuclei. In a slightly different form, this formula 
was first given in a paper by Bohr, Fröman, and Mottei.son15. There, this intensity 
formula was tested by comparing, for each possible odd-A parent nucleus, the relative 
values of the empirical transition probabilities for the favoured alpha groups with 
the relative values of the corresponding theoretical transition probabilities. A more 
sensitive way of testing the formula is, however, to compare the empirical values 
of for the favoured alpha groups of the odd-A nuclei (obtained from Table 1) 
with the corresponding theoretical values. This comparison is given in Table 10 which 
lists those favoured alpha groups of odd-A nuclei for which sufficient empirical data 
are available. The values of Kf (= A’/) and A are taken from the Tables III and IV 
in the previously mentioned paper15, except for the parent nucleus E253 for which 
the suggested identification of the favoured alpha groups is new*.  For this nucleus 
we have assumed that Kf = 7/2. The values of the alpha particle energies and the 
empirical values of the reduced transition probabilities CKf,if are taken from Table 1 
in the present paper. The cj-values are obtained by interpolating between the empirical 
Ci-values for the even-even nuclei (see Table 2). The theoretical values of CKf,if have 
been calculated from (VIII-18) by neglecting the terms corresponding to Z>6 (and 
in most cases also the term corresponding to / = 6). When the empirical and the 
theoretical values of CKf,if in Table 10 are compared, one finds an agreement which 
is as good as can be expected considering the approximations involved in the theore­
tical formula and the uncertainties in the experimental data.

* Note added in proof: The identification of the favoured alpha groups of E25S is also given in the 
forthcoming review article on alpha decay by Perlman and Rasmussen43a (their table XVI). Furthermore, 
these authors suggest an identification for the favoured alpha groups of Pu241.

Although no favoured alpha groups of odd parity have so far been identified 
for odd-A nuclei, the existence of odd parity alpha groups for some of the heavy 
even-even nuclei suggests the possibility for the existence of favoured alpha groups 
of odd parity for neighbouring odd-A nuclei. In the case of such an odd-A nucleus,
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the two bands in which the favoured alpha groups of even and odd parity, respectively, 
leave the daughter nucleus are expected to have similar level structure, but opposite 
parity, and to be displaced with respect to each other by roughly the same amount 
as the even and odd parity bands in neighbouring even-even nuclei, i. e., by a few 
hundred keV. The possibility for detecting the odd parity alpha groups here suggested 
can be estimated on the basis of the intensity formula (VIII-18) and the empirical 
ci-values for the even-even nuclei.

e. Angular distributions of the alpha groups from polarized nuclei.
The expression (VI-14) for the angular distributions of the alpha groups emerging 

from polarized nuclei can be evaluated by means of the formula for the expansion 
of a product of two spherical harmonics in terms of spherical harmonics and by 
means of a sum rulella which expresses sums (over magnetic quantum numbers) of pro­
ducts of three Clebsch-Gordan coefficients in terms of Racah coefficients. Thus, if the 
coefficients at o are assumed to be real, the expression (VI-14) becomes

! 2 L +1 «
2 7/ + 1

jyy(-i)C'--<tr)(.)isz('+i) r(z'+i)
I z r x

z(Z,z(,/',WrJO^Fr p.(c<>s0),

(VIII-20)

where

l'i = exp
(_ /(/+1) i / x
I X I' (VIII-21)

and the coefficients Z are related Io the Racah coefficients IV according to the formula113,

Z(a, b, c,d; e, / )

= (- i)l </-«+*)  |/(2a + l)(2b+l)(2c + l)(2d + l) W(a, b, c, d; e, /’) (a, c; 0,0 | a,c-, f, 0) .

The expression (VIII-20) is to be averaged with respect to the initial distribution of 
Mi-values. This averaging affects only the Clebsch-Gordan coefficient which appears 
in (VIII-20). For L = 0, this Clebsch-Gordan coefficient is always equal to 1, and for 
L = 2 its average value with respect to the initial distribution of Mi-values is

(Zi,2;Mi,0|/i,2;7i,Mi)^ = __ *_ —■ - •= d,
)/(2/1-l)2Z((2/( + 2)(2/i + 3)

where A is defined by

Mf-|A(A + 1)>

(VI11-22)

(VIII-23)

Mat.Fys.Skr.Dan.Vid. Selsk. 1, no.3. 8
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and is a measure of the polarization of the parent nuclei, being equal to zero for non­
polarized parent nuclei. Considering only even L-values and using (VII1-22), we can 
write the above mentioned average value of the expression (VIII-20) as follows:

Bo

4 71

where

 

x

22X

{1 +C//i7/(B)Z1P2(cos^)+. . .),

(- 1)’ (2 l + V} cos
X ___________________________   

(VIII-24)

(VIII-25)

The case of favoured alpha decay of parent nuclei of spin 5/2 is especially 
interesting for the interpretation of the experimental results available on polarized 
nuclei22- 46- 46a, 47 Assuming the function tpi to be independent of d' (i. e., all the 
coefficients at, except a0> to be zero), we obtain the numerical values of the coefficient 
C5 listed in Table 1 1. The quadrupole deformations found for the very heavy nuclei

Table 11.
Values of (B) for the case of favoured alpha decay 
corresponding to x = 50, kR^x = 0.2, and yi (&') being inde­

pendent of ■&'.

B C 5 ( 6 ( B )

— 2 - 1.26
- 1 - 0.83

0 0
1 1.15
2 2.07

correspond to prolate nuclear shapes, i. e., to positive B-values. For such B-values, 
the coefficient C5 is positive, while the experimental results appear to indicate an 
alpha distribution peaked perpendicular to the direction of polarization22- 46, 46a, 47 
We abstain from giving values for C5
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Appendix A.
Formulae and Graphs for the Gamow Wave Functions.

In this appendix, we collect some formulae*  for Gamow’s well-known WAb­
solution of the differential equation describing the penetration of an alpha particle 
of given angular momentum I through a spherically symmetric Coulomb barrier. For 
Z = 0, we also give graphical illustrations of some properties of this solution.

Consider the differential equation

+ U;(r)-ElG((E,r) = 0, (A-l)

2(Z-2)e2 A2/(/+l)
r 2 m r2

J h2 d2
I - 2 m dr2 

where
C5(r) =

The Gamow wave function Gi (E, r) is a solution of (A-l) representing an outgoing 
wave for large values of r. Such a solution is unique except for an arbitrary constant 
factor, and by choosing this factor conveniently, we get

Et - E
j exp when th > E

E - Et
_ 1

4
1

1 . jr ., l‘r /E — Ui\~ ,
1 exp |'4+'<\ (-£“) <fr| w hen Ui < E

(A-2)

according to the WAb-approximation, which in general is considered to be valid if 
the condition

<<11 (li Ut-E
k dr\ E / (A-3)

is fulfilled. The two integration limits in (A-2), which are not written out, both corre­
spond to the point wehere Ui, which is an abbreviation of Ui (r), is equal to E. The 
quantity k which appears in (A-2) and (A-3) is defined by

Zc = - 12 mE,n ’
and represents the magnitude of the wave vector for large values of r. The corresponding
velocity is

-I/2'-J m
For the 

quantity
evaluation of (A-2) it is convenient to introduce the dimensionless

* Many of these formulae are already known and can be found, e. g., in the book by Gamow and 
Critchfield28.

8*
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4 (Z-2) g2 (A-4)

which is well-known in atomic collision problems. In our case, x is of the order of 
magnitude of 50. The fact that x>>1 is a criterion that a classical orbital picture 
is possible outside the potential barrier17.

For the quantity (Ui-E^/E which appears in (A-2) and (A-3), we now easily 
find that

(A-5)

Fig. 4. Graphical representation of the expression on the left-hand side in the condition (A-6) for the validity 
of the WKB-approximation.

In the condition (A-3) it is for our purpose a sufficiently good approximation 
to replace Ui (r) by b'o (r). According to (A-5), this is the same as replacing (Ui~E)lE 
by x/År-1. In this way the condition (A-3) becomes

x
(A-6)

A graphical representation of the expression on the left-hand sidt' of this inequality 
is shown in Fig. 4, from which it is seen that the condition (A-6) is fulfilled except 
for a small region around the classical turning point.

In the following we shall treat the two cases År < x and kr > x separately.

a. 77ic case kr<x, i. e., Uo(r)>E.

Instead of r we introduce the variable a which we define by

(A-7a)

We note the two formulae



Nr. 3 57

ö(xcosa) 
dE

(A-8a)

and
da cota 
dE^~ 2 E (A-9 a)

for later use.
The condition (A-6) for the validity of the WÅ'B-approximation becomes

2 sin3 a cos a>> —.
x

(A-10 a)

From (A-2) (for Ui>E), (A-5), (A-7 a), and (A-lOa) we gel the well-known ap­
proximate formula

Gi (E, r) = (cot a)2 exp !x (a - sin a cos a) + —— tg a! (A-l 1 a)

which is valid if the centrifugal barrier is small compared to the Coulomb barrier. 
We shall now calculate Gi(E + A E, r)/Gi (E, r). Obviously,

In
Gt(E+AE, r) 

Gt ÇE, r)
™ |/b In Gl (E ’

Using this formula, together with (A-8a), (A-9a), and (A-lla), we gel

G/(F±JU, r) 
G i (E, r)

4 x (a + sin a cos a) +
AE\
E I (A-12 a)

if the condition (A-lOa) is also taken into account.
The formulae (A-ll a) and (A-l2 a) are valid only if it is assumed that the centri­

fugal potential is small compared to the Coulomb potential. If this condition is 
not introduced, one linds, by a straight-forward evaluation of the integral appearing 
in the WTvß-approximation formula (A-2) for Ui>E, that23

where

Gt (E, r) =
'(/ + !)

X*
E'Ça, x) = |/a In

+ 2 u + |/ 4 o (a + x - x2) 
x |/1 + 4 a

1

2 x - 1

(A-l 3 a)

1 arccos -7—
y 1 + 4 a

-j/a + x- x2 (A-14 a)

and arccos shall be chosen to have a value between 0 and n. If we suppose I (I + l)/x2 
to be small and expand F ÇI (I + l)/x2, åt/x) in terms of powers of I (I + l)/x2, keeping 
only terms that are linear in I (Z+l)/x2, we find from (A-13a) and (A-14a) the ap­
proximate formula

Gi ÇE, r) = Go ÇE, r) exp [/~ 1 | (A-15 a)

which gives the /-dependence already found in (A-ll a).
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(Go (E, H0)IGi (E, /?0))2 

according to I according to 
(A-13a) and (A-lla) (A-15a)

1 I 1
0.854 0.852
0.624 0.619
0.390 0.383
0.209 0.202
0.961 - IO“1 0.907-IO“1
0.381 - IO“1 0.347-10-’
0.130-10-1 0.113-10-’

I
E, G«))2(Go (G,

according to 
(A-13 a) and (A-14a)

according to 
(A-15a)

Table 12. For the case z = 50 and Â7?() = 0.2 z, values of the relative penetration 
probabilities for different angular momenta / are listed. They are given in 
two different degrees of approximation. The last column corresponds to 
column 3 in Table 13.

8 0.386-IO-2 0.315-10“2
9 0.995-IO'3 0.747-IO“3

10 0.224-IO“3 0.151-IO'3
11 0.440 -10"4 0.259- IO'4
12 0.762-IO-5 0.380-10“5
13 0.116- IO-5 0.475-IO“6
14 0.158-10-« 0.506-10“’
15 0.190-10-’ 0.459- 10”8

Using formulae equivalent to (A-13a) and (A-14a), Devaney23 has calculated 
the relative penetration probabilities {Go (E, Eo)/Gz (E, Eo)}2 for alpha particles of 
dillerent angular momenta / in the case that Z-2 = 86, Eo = 9.87-IO13 cm, and 
E = 4.88 MeV (i. e., z = 49.1 and kRo/x = 0.195). His numerical results (table 1 on 
p. 591) which are also listed in Blatt and Weisskopf12 (table 3.1 on p. 577) appear, 
however, to be considerably too low for large values of I. It is probable that Devaney 
has calculated {Go (E, 7?o)/Gz (E, Eo)}4 instead of {Go (E, Eo)/Gz (E, Eo)}2. For the 
parameter values z = 50 and 7rEo/z = 0.2, which differ only slightly from those

Table 13. Relative penetration probabilities for different angular momenta I, calcula­
ted according to the simple approximate expression exp{-cl (1+1 )}. The 
values chosen for the parameter c, which is related to the atomic parameters 
according to the formula (A-16a), cover the range of practical interest.

/
for c = 0.07

exp '

for c = 0.08

-cl (I + 1)}

for c = 0.09 for c = 0.10

0 1 1 1 1
1 0.870 0.852 0.835 0.819
2 0.657 0.619 0.583 0.549
3 0.432 0.383 0.340 0.301
4 0.247 0.202 0.165 0.135
5 0.123 0.907-10_1 0.672-10-1 0.498-10-1
6 0.528- IO'1 0.347-10_1 0.228- 10“1 0.150-10_1
7 0.198-10_1 0.113-10-1 0.647-10-2 0.370-10-2
8 0.647-IO"2 0.315-10-2 0.153-10-2 0.747-10-3
9 0.183-10“2 0.747-10-3 0.304-10-3 0.123-10-3

10 0.453-IO"3 0.151 - IO“3 0.502-10-“ 0.167- IO"4
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corresponding to the case treated numerically by Devaney, we give in Fable 12 the 
values of (Go (E, 7?o)/Gz(E, 7?O))2 according to (A-13 a) together with (A-14 a), and (A-15 a).

According to the simple approximate formula (A-15 a) the relative penetration 
probabilities for different angular momenta I are exp{-cZ (/+1)}, where

2
%

2 (Z - 2) e2 - 1 (A -16 a)

and 7?o is the radius of the1 spherical nucleus. In Table 13 numerical values of 
exp{- cl (Z 4 1)| are listed for the range of c-values which is of interest for experi­
mental interpretations.

kr
Fig. 5. Graphical representation of the 10-logarithm of |G0 (E, r)|.
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I). The case kr > x, i. e., Uo(r)<E.
Instead of r we introduce the variable A, which we define by

Nr. 3

cosh2 A = — = (A > 0).
x U0(r)

k r

Fig. 6. The increase of the 10-logarithm of | Go (E, r)|, as E is 
increased by JE but r is fixed, is obtained by multiply­
ing the appropriate ordinate in this graph by AE/E.

(A-7b)

We note the two formulae

and

Io be used later.

0 (x cosh A)
= i 

dE

dA coth A
d E ~ 2 E

(A-8 b)

(A-9b)

The condition (A-6) for the validity of the IV/vB-approximation becomes

2 sinh3 A cosh A > > — .
x (A-10 b)

From (A-2) (for Ui < /<), (A-5), and (A-7 b) we gel the approximate formula



Nr. 3 61

(il (E, r) = (coth A)2 exp |1

i n
4

x (sinh A cosh A - A)--------------tgh A

Now, we calculate Gi (E + A E, E)/Gi (E, r) I. Obviously,

In
Gl (E + A E, r) 

Gi (E, /■)
J d
\dE

(A-1 lb)

Using this formula, together with (A-8b), (A-9b), and (A-llb), we get

Gt (E + A E, r)
G^E.r)

1 /(/+!) 1
4 sinh2 A + 4 x2 sinh4 A (A-12 b)

i i logFrom the formulae in this appendix, log | Gq(E ,r) | and — 

can easily be found as functions of kr/x and x. Figs. 5 and 

\Gq(E + A E, r)/G0(E, r)\ 
A E/E

6 give graphical repre­
sentations of these functions. In connection with these figures, it should be remarked 
that, in the approximation considered here, Go(F,r) is real and positive for Ar<x, 
whereas it is complex for kr>x. The same is obviously true for the function 
G0(E + AE, r)/G0 (E, r).

Appendix B.
Penetration of an Alpha Particle through a Static Non-central Field.

The wave equation for an alpha particle penetrating a three-dimensional potential 
barrier, which is fixed in space, is

Ay) = K2 y), (B-l)
where

„ r/ / \ I /‘^n,ZTr 7 I /V~Ek~ K (r) - [/^ (V -£) - k /

V denoting the potential, m the mass of the alpha particle, E its kinetic energy after 
it has escaped completely from the potential barrier, and Å’ the magnitude of the 
corresponding wave vector. For the construction of an approximate solution of (B-l), 
Christy has recently developed a three-dimensional VWiB-method*.  By means of 
such a solution, he can approximately express the alpha wave function in an arbi­
trary point P inside the potential barrier in terms of the alpha wave function on 
the nuclear surface, except for a constant factor. In this appendix, we combine 
Christy’s ideas with a method similar to that used by Kirchhoff for the rigorous 

* Private communication from Professor R. F. Christy to Professor A. Boiir. See also reference 21.
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justification of Huyghens’ principle in optics*  (sec Bohn’s monograph on (»plies18.) 
I he result of these considerations is an approximate integral representation of the 
alpha wave function inside the potential barrier in terms of the alpha wave function 
on the nuclear surface, which is closely related to the result of Christy although 
more rigorously justified. The kernel H (P, P') appearing in our integral represen­
tation corresponds, in Kirciiiioit-’s formula for light waves in free space, to the spherical 
wave exp (ik | r p. - rp | }/| r p, ~rp |. Considered as a function of the point P', the kernel 
H (P > P'") 1S a solution of (B-l) with a singularity behaving as l/jrp -rp | as rp,->r/t. 
We first consider the construction of this kernel by means of the second order ap­
proximation of the three-dimensional W7CB-method, then we derive the previously 
mentioned integral representation for the alpha wave function. To investigate the con­
sistency of the resulting formula we apply it to the case of a spherically symmetric 
potential barrier and find that the well-known IVA'B-approximation solution of this 
problem is very nearly reproduced. Finally, we use our integral representation to 
obtain a simple approximate solution of the problem concerning the penetration of 
an alpha particle through an anisotropic potential barrier.

By substituting
V» = e~'S (B-2)

into (B-l), we gel
I grad S |2 - d S = K2.

In analogy to the procedure in the one-dimensional lV7<B-method, we here neglect 
the term dS and get

|gradS|=A. (B-3)

I his equation is similar to the eikonal equation in geometrical optics (with S/k 
corresponding to the eikonal) or to the Hamilton-Jacobi equation in classical mecha­
nics (with /iS corresponding to Hamilton’s characteristic function). From (B-3) xve get

grad 5 = K (r) es, (B-4)

where es is a unit vector field; its determination will be discussed later. For an arbi­
trary choice of the vector field es there exists in general no solution S of (B-4). The 
necessary and sufficient condition for the existence of such a solution is that 
curl (Aes) = 0 . It is easily seen that, if there exists a solution S of (B-4), the line integral 
\ K ds, taken along a curve which is everywhere tangent to es and which terminates 
on any two surfaces of the type S = constant, has the same value for all such curves 
between these two surfaces, and it is also seen that, for any two points P and P' on 
any such curve, this curve is the path between P and P' which minimizes the 

integral \ A ds.
« p

* An extension of Huyghens’ principle in optics to the case that the index of refraction is not con 
stant but varies slowly in space can also be obtained along similar lines as those which are described in this 
appendix.
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To construct a special solution of (B-3), we determine the path which joins two 
points P and P' and which has the extremal property

minimumç;,.„♦ p (B-5)

s being the arc length measured in the direction from P to P'. The unit vector which 
is tangent to this curve and which points in the direction of increasing arc length s 
is denoted by es. The requirement (B-5) is analogous to Fermat’s principle in geome­
trical optics, and the path which one obtains from it is analogous to a light ray. 
Therefore this path will be called the ray between the points P and P'. From the 
general formula

r*P'  P' r»P'/ . I
ö\l\ ds = Kes-ôr + \ -Igrad A'- (A”e,s) • dr ds (B-6)

Jp p Jp ’ c ,s

it follows that the differential equation for a ray is

grad K - y (A'e,) = 0, 
as

(B-7)

for the first term in (B-6) vanishes for fixed P and P'. By keeping P fixed, but letting 
P' lake all possible positions, we can cover the space by rays which emanate from 
P. From (B-6) and (B-7) it is then clear that all these rays are cut orthogonally by 
any surface such that the points P' on it fulfill

where the integration is performed along the ray from P to P'. From a simple geome­
trical consideration it then follows that the condition curl (A’e,s) = 0 is fulfilled. We 
now define

(B-8)

where the path of integration is the ray between the given point P and a variable 
point P'. This function 5 is obviously a solution of (B-4) and therefore also of (B-3), 
if es on the right-hand side of (B-4) is defined as above by means of the paths obtained 
from the extremal requirement (B-5). Hence e~s, with A defined by (B-8), is a first 
order WAfB-approximation solution of the Schrôdinger equation (B-l). For the validity 
of this approximate solution it is sufficient that simultaneously

grad — << 1
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The first of these two inequalities is identical to the well-known condition for the 
validity of the first order WAB-method in one dimension, whereas the second one, 
which, in the case of a spherically symmetric potential barrier is certainly fulfilled 
if r K (r) is large compared to 1 and if furthermore the point P' does not lie too close 
to P, appears only for the VFAB-method in three dimensions.

Next, we derive the second approximation of the solution of (B-l) which we 
have found above in first approximation. To this purpose, we write

V = u e~s, (B-9)

S being still defined according to (B-8). By substituting (B-9) into (B-l ), and using 
(B-4) or (B-8), we get

u div (Aes) + 2 A'es-grad a — ZÎ u = 0 .

In analogy to the procedure in the one-dimensional WAB-method we neglect the 
term Zl u and get

es-grad In = - i div es,

i. e.,
I rs In = const K ' exp - \ | div es ds},

the path of integration here being along a ray emerging from the point P. From this 
expression for u, and from (B-8) and (B-9), we find that the function

div es ds il A(P)
A'(P')

(B-10)

is an approximate solution of (B-l). Here, the point P is considered to be fixed and 
the point P' to be variable, and the integrations are performed along the ray joining P 
and P' (see Fig. 7); Pi is an arbitrary point on this ray (conveniently chosen to lie 
close to /■*).  Because all the rays go through the same point P, a simple geometrical 
consideration shows that

I div es

(at the point P')

1
rP’~rP as P' P.

If P' lies sufficiently close to P (and if Pi is chosen to lie close to P), the formula 
(B-l9) therefore becomes

H (P. P') = |/£ exp {- J A- (-) •

Hence,

- asP'^
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For the validity of the approximate solution (B-10) il is sufficient that simultaneously

grad A.1 . 1- d - < <
K K

<<1

div es 
K

1 dives
Sgrad K

< < <<1 .

The first series of these inequalities is the same as the condition for the validity of 
the second order approximation of the one-dimensional IV/iB-method, whereas the 
second series of the above inequalities appears only in the three-dimensional WKB- 
method. As I1' approaches P the inequality |dives|<<Zi becomes much violated; 
nevertheles, (B-10) may still remain an approximate solution of (B-l) and, hence, the

Fig. 7. The figure shows rays emerging from the point P. On the ray PP', we have indicated the point 
and the unit vector es along the ray in an arbitrary point on it.

singularity which we have found for H (P, P') may be relevant. Thus, a consideration 
of a spherically symmetric potential barrier indicates that for this case the approximate

solution (B-10) is valid in the immediate neighbourhood of the point P if grad- <<1.

The function H (P, P') which we have constructed and discussed above will appear 
as the kernel in the approximate integral representation of the alpha wave function 
which we now derive.

Considered as a function of P' the function PI (P, P'), defined by (B-10), is a 
second order W/CB-approximation solution of (B-l) having the singularity l/|rp'-rp| 
at yp' = rP. The alpha wave function ip (P') inside the potential barrier is also a 
solution of (B-l), and therefore we get*

ip (P) = - C ( (y, (P') gradp' H (P, P') - Pl (P, P') gradp' ip (P')} • d«p' (B-l 1) 
4 71 '

from Green’s formula, the surface element atP' being denoted by dop’. In the formula 
(B-ll), which is analogous to Kirchhoff’s formula in optics, we consider the inte-

* The formula (B-ll) is exact as far as the kernel Pl (P, P’) with the required singularity at rP’ = rp 
is a correct solution of (B-l). As has been pointed out by Groenewold32, it is possible in principle to use 
an exact formula for this kernel.

Mat.Fys. Skr. Dan.Vid.Selsk. 1, no.3. 9



66 Nr. 3

gration to be performed over the nuclear surface and over the surface of a 
sphere concentric with the nuclear surface and conveniently chosen somewhere in 
the potential barrier (see Fig. 8). Since the alpha wave function ip on this outer 
surface of integration is small compared to the same wave function on the nuclear

I Cp' Isurface, and since H (P, P ) contains the factor exp K ds , the integral over the 
I » p I

outer surface is negligible compared to the integral over the nuclear surface, unless 
the point P lies in the vicinity of the outer surface. In order to obtain the alpha wave

Fig. 8. Geometrical illustration of the quantities appearing in (B-ll) and (B-14). The integrals in these 
formulae shall be performed over the nuclear surface and over the larger spherical surface which lies 
somewhere in the potential barrier. The surface elements da' on these two surfaces have the direc­
tions shown in the figure. Unless the point P lies in the vicinity of the outer spherical surface, the in­
tegral over this surface is negligible compared to that over the nuclear surface. The curve PP' is the 
ray joining the point P in the potential barrier and a point P' on the nuclear surface, and es is the 
unit vector along this ray at the point P'. The gradient of the alpha wave function at the point P' 
has the direction -e where e is a unit vector which we assume to be approximately orthogonal to 
the nuclear surface at the point P'. For the most important rays PP', the unit vectors es and e 
have approximately opposite directions.

function in the interior region of the potential barrier, where we wish to apply this 
approximation, it is therefore sufficient to perform the integral in (B-ll) only over 
the nuclear surface. To simplify (B-ll) further we note that, in first approximation,

gradp' H (P, P') = - K(P’)H(P, P’) es, (B-12)

according to (B-10). Furthermore, if ip varies slowly on the nuclear surface compared 
with its rapid variation in the radial direction, we can write approximately

gradp' ip (Pr) = - K (P') ip (P') e, (B-13)

where e denotes a unit vector which is directed almost radially outwards from the 
nuclear surface. The minus sign in (B-13) is due to the fact that ip is decaying 
exponentially in the outward direction. Substituting (B-12) and (B-13) into (B-ll), 
we get the approximate formula
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y(P) = — [[h(P, P') K(P')rp(P') (e8-e)- doP-, (B-14)
4 nJ

where the integration is to be performed over the nuclear surface. The vector e is 
directed essentially radially outwards from the nuclear surface, whereas es and dap' 
are directed essentially in the opposite direction (cf. Fig. 8). The formula (B-14), 
which is analogous to a formula appearing in Kirchhoff’s treatment of the diffraction 
of light18, has a similar relation to Christy’s approximation method as the just men­
tioned formula in Kirchhoff’s theory has to Huyghens’ principle.

To illustrate the use of (B-14) and to investigate the accuracy of this formula, 
we now consider the well-known case that the potential V (r) is spherically sym­
metric. Using polar coordinates (r, d, (p), we find that the extremal problem (B-5) 
can be written

/1 + r2 dr = minimum .

The corresponding Euler-Lagrange equations give

and

K (/•) r2 sin2# ar
(B-15)

(B-16)

C and 1) being integration constants. From (B-15) and (B-16) we gel

(B-17)

On a ray emerging from the point P we consider a variable point P'. The coordinates 
of P' with respect to a polar coordinate system with the axis passing through P are 
denoted by (rp', d#, A <p). In the spherically symmetric case, the rays must obviously 
be plane curves, and therefore A <p is constant along any ray through P. Using the 
coordinates (rp', Ad, A (p) instead of (r, d, <p) in (B-15), (B-16), and (B-17), we there­
fore find that C = 0 and

dA d 
drP’

D

rp- K Op) 1/ 1

7)
/•p- Of')

(B-18)

and, hence,
9*
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(B-19)

The signs on the right-hand sides of (B-18) and (B-19) apply to the case that rp' < rp, 
if D is chosen to be positive. We shall restrict ourselves to this case, but we remark 
that the signs arc to be reversed if rp'>rp. By substituting (B-19) into (B-17), we get

(B-20)

hence, approximatelyand

2ds
dr

1
4- __

2(32

where

\ K (r) dr + 
*Vp'

(d W
2 c

r "r . 
\.p,r2A(r)

(B-21)

(B-22)

From (B-10) and (B-21) it is clear that, in the integration over P' in (B-14), we get 
essential contributions only when

(W < j.
2 c ~

This justifies the expansions which have been made in (B-17), (B-18), and (B-19), 
for in typical cases 

9

if rp' < r < rp and P’ lies on the nuclear surface and P lies somewhere in the middle 
of the potential barrier.

Before we can proceed further we must calculate div es in our spherically sym­
metric potential barrier. To this purpose, we consider a (somewhat cone-like) surface 
generated by a narrow bundle of rays emerging from the point P, a variable point 
on any one of these rays being denoted by P’. The area which this surface (tube of 
rays) cuts out on the surface through P', which cuts the rays emerging from P ortho­
gonally, will be denoted by A. For small angles A & the surface element .4 is approx­
imately orthogonal to rp'. Using this fact and the formula
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dCld)2
drp’

which follows from (B-LS) and (B-19), we gel

Furthermore, according lo Gauss’ integral formula, we have

and, hence,
(al

div cs 
the point

1 dA
.4 drp'

(al

if Ad is small.

div es «s 2 
the point P')

,.rP

rp. A' (rp j \
• rp'

dr
r2 K (r)

1
rp'

From (B-23) we easily find that

(B-23)

1

dr» p
drp

rPrPK(rP)\ ,2 ;(
€ rP

(B-24)

it' Ad is small and Pi is chosen to lie very close to P. From (B-10), (B-21), and (B-24)
we then get the approximate formula

H (P, P’) K (P') =
1 i /Æ (j'p') , I 

crp-rp I A (rp) °XP I
Crp 
\ A (r) dr — (Wl (B-25)

where c is defined by (B-22).
We now assume the wave function ip (P') at any point P' (rp', d', cp') on the 

spherical surface rp' = Ro to be equal to Yi,m(d', <p'}, and calculate the wave function 
ip (P) at the point P (rp, d, (p) in our spherically symmetric potential barrier. To this 
purpose, we substitute (B-25) into (B-14). If we then replace, firstly, (es-e)-dap' by 
2 Rq sin (A d) d(A d) d(A (p), secondly, (A d)2 by 2 { 1 - cos (d #)}, thirdly, cos (A d) by 
z and use the formula

Yi,m(d' ,cp’) Dlmn(d, (p,. . .) Yln(Ad,A<p), 
n

we get the approximate result
Mat. Fys. Skr. Dan.Vid.Selsk. 1, no.3. 10
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(B-26)
• ;7ïo

where

(B-27)

this result cannot be used for very

start from the formulae

a0

«1

az-2 (2 I - 1 ) c az-i.az =

(B-28)
x

(B-29)

which is obtained by applying a first order W7<B-approxi mation to the differential 
equation for the function x ji (— z.r), and which is valid if x > > 1 . If the more restrict­
ive condition (Z (Z + 1 )}2/x3 << 1 is fulfilled, the formula (B-28) simplifies to

and use the recursion formula

For an approximate evaluation of (B-27) one can use the formula

i
c iljt

 2
= 1 — e c

ji denoting a spherical Bessel function. However,
large /-values, since the formula (B-14), on which the calculations leading to (B-26) 
and (B-27) are based, is valid only if the wave function varies slowly on the nuclear 
surface compared with its rapid variation in the radial direction.

The coefficient az is real and positive, since it is seen, e.g., from the power 
series representing the spherical Bessel function /) (z) that i1 j i (-ix) is real and posi­
tive if x>0. For the calculation of az, according to (B-27), without introducing any 
further approximations, one can

.r2

and from this formula it follows that az is approximately equal to exp { —4 cl (/ + 1)} 
if <■’'/(/+1)}2 < < 1 . 1'he results of some numerical calculations of az in the different 
degrees of approximation now discussed are shown in Fig. 9.

/A’(/W I ‘‘r'' 
rp |/ /?(7p)eX|,|V(P) - w°

1 C+ 1 2 — 2
az = - \ Pi (z) e c dz = - e

• — i

* Christy has also applied his approximation method to the spherically symmetric penetration 
problem and found that the alpha wave function corresponding to the angular momentum I contains the 
/-dependent factor az given by (B-27) (private communication).
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Eig. 9. Results of some numerical calculations of a; in different degrees of approximation. The points denoted 
by crosses, circles and triangles (which correspond to c = 0.05, c = 0.10, and c = 0.20, respectively) 
have been obtained from the formula (B-27) without introducing any further approximations. The 
curved line has been obtained from (B-27) and the approximate formula (B-28), whereas the 
straight line has been found from (B-27) and the formula (B-29), which is still more approximate 
than (B-28). In the approximation represented by the straight line, a/ is given by the well-known 
expression exp | cZ (Z + 1)\ .

In the usual treatment of the penetration of an alpha particle of given angular 
momentum I through a spherically symmetric Coulomb potential Uo (r), this problem 
is reduced to the problem of finding the appropriate solution Gi (E, r) of the dif­
ferential equation (A-l) in Appendix A. If the alpha wave function on the spherical 
surface rp’ = Ro is assumed to be equal to , <p'), the alpha wave function at
a point P inside the potential barrier contains an /-dependent factor corresponding to 
az in (B-26) and being the quotient of Gi (E, rp)/Gi (E, Ro) and Go (E, rp)/G0 (E, Ro) ■ 
The value which is obtained for this quotient when the strict WAB-approximation 
(A-13 a) and (A-14 a) in Appendix A is used for the functions Gi (E, r) and Go (E, r) 
will be denoted by yt. In the limit of small values of / (/+ 1 )/x2, the formulae (A-13a) 
and (A-l4a) can be replaced by (A-l5a), and then the above mentioned quotient 
reduces to a quantity which will be denoted by ßi, and which is given by 

where
io*
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2
c = -

X
(B-31 )

The quantities ai, ßi, and yi have the same physical meaning, but they are obtained 
by different approximation methods. In 'fables 14 and 15, the results of some 
numerical comparisons between these three quantities are shown. It is seen that a/, 
ßi, and y i are approximately equal up to fairly large values of I.

'1’abi.e 14. Table 15.
Numerical values of aßßi 

for different values of c.

/
ailßl

for c = 0.05 fore = 0.10 for c = 0.20

0 1 1 1
1 0.999 0.995 0.977
2 0.996 0.986 0.947
3 0.993 0.974 0.930
4 0.989 0.96G 0.944
5 0.986 0.964 1.008
6 0.983 0.971 1.152
7 0.981 0.994 1.427
8 0.982 1.036 1.94
9 0.987 1.106

10 0.995 1.21
11 1.009 1.37
12 1.029 1.61
13 1.057 1.96
14 1.095 2.5
15 1.145

Numerical values of ai/ßi and ßi/yi 
for krp'/x = 0.2, krpjx = 0.6 and x=50.

1 <*llßl ßilyi

0 1 1
1 0.999 1.000
2 0.997 0.998
3 0.994 0.996
4 0.990 0.992
5 0.987 0.985
6 0.984 0.974
7 0.983 0.957
8 0.983 0.935
9 0.986 0.905

10 0.993 0.869
11 1.004 0.823
12 1.020 0.770
13 1.043 0.709
14 1.075 0.642
15 1.116 0.570

After this detailed treatment of the spherically symmetric penetration problem, 
we now consider the penetration of an alpha particle through the anisotropic potential 
V (r) outside the surface of a deformed nucleus which wc suppose to be fixed in 
space. We write the equation for the nuclear surface in the general form

r = /?(#'), (B-32)

and we assume that the alpha wave function on this surface is a given function 
yo (&', <p') • Assuming the purely anisotropic part V (r) - Uo (r) of the potential V (r) 
to be small compared with its spherically symmetric part Uo(r), we can in first ap­
proximation use the same rays as for the spherically symmetric potential f:o(r). The 
reason is that the ray between any two given points P and P' in the potential barrier 

r
has the extremal property (B-5), which implies that the integral \ K ds along the ray 

». p
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between these two points is stationary for small variations of the path of integration 
connecting P and P'. According to (B-20), we then have

where A & is the angle (viewed from the center of the nucleus) between a point P 
in the potential barrier and a point P' on the nuclear surface, and Ko (r) is the function 
which we obtain from A (r) by replacing V (r) by Uo(r). Hence, we get the ap­
proximate formula

if we neglect terms of the order of magnitude (JA/A”)2, where AK = A(r)-Ao(r). 
Cp'

This formula for \ A ds can be written
dp

where Ao is a constant conveniently chosen to be some average value of A (#'). The 
angle & is here a function of r which is geometrical ly represented by the ray passing through 
the points P and P'. In the last term it is safe to replace rp' by Ao and K (r, by 
Ko (r) . In the third term, we can approximately replace the variable angle & by the angle 
d' for the point A', for | rp' - Ao | is small compared to Ko, and the most important rays 
go essentially radially in the neighbourhood of the nuclear surface. The third term 
turns out to be more important than the second one, and therefore we may evaluate 
the latter in a rather approximate way. Since A K decreases rapidly with in- 

crp,
creasing r, the essential contributions to the integral \AKdr are obtained for small 

dp„
values of r, and therefore we approximately replace the variable angle & appearing 
in the integrand A K (r, by the angle d' for the point A'. Substituting the resulting 

*p'
formula for \ A ds into (B-10), and assuming that A lies so far away from the nuclear 

dp
surface that the variation in H (P, A') as A' changes slightly is due essentially only 

r
to the change of the integral \ A ds in the exponent of (B-10), we gel the approximate 

dp
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formula
i’rp

H (P, P') = H0(P, Po) exp \ K (r, d') dr~\A K (r, $') dr 
I ♦ ß., ♦ fi(1

(B-33)

where 7J0 is the point on the sphere r = Ko which has the same polar angles (&', </) 
as the point P' on the nuclear surface, and the index 0 on the kernel Ho (P, Po) in­
dicates that this kernel refers to the case that the potential is spherically symmetric 
and equal to Uo (r). From (B-14) and (B-33) it follows that, in first approximation, 
the alpha wave function at the point P in the anisotropic potential barrier V (r) is 
the same as if the electrostatic potential were equal to Uo (r) ( = the spherically sym­
metric part of V (r)) and the alpha wave function y> on the sphere /• = Eo were equal to

y>o(d’, (p') exp \ K(r, d') dr K (r, d') dr . (B-34)
( ♦’«<. t'R,, I

This approximate result shows clearly how the alpha wave function is affected in a 
very simple and natural way by the variation in thickness of the potential barrier due 
to the shape of the nucleus and by the variation in height of the anisotropic potential. 
Alter having resolved the expression ( B-34) in terms of spherical harmonics, one can 
immediately give the alpha wave function in the potential barrier as a superposition 
of expressions such as that on the right-hand side of (B-26), which we have pre­
viously shown to be essentially equivalent to

G i (E, rp) 
rp G i (E, Eo) ) I, m (d , y) .

Hence, we get the final approximate formula

y> (r, d, y) =
i ~

Go G i (E, /•) 
r Gi(E,P0) Yl.12 (d , y)

n* 2" ,
x\ \wo(d', (jp')exp \K(r, d') dr - \A K (r, d') dr Y*  ()(d', (//) sin d'dd'dy' 

• o »o I .'ä„

(B-35)

for the alpha wave function in our anisotropic potential barrier.

CERN Theoretical Study Division, Copenhagen 
and

The Institute for Theoretical Physics, 
University of Copenhagen, Denmark.
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